TY - JOUR
T1 - Fragility of the A -type AF and CE phases of manganites
T2 - Insulator-to-metal transition induced by quenched disorder
AU - Alvarez, G.
AU - Aliaga, H.
AU - Şen, C.
AU - Dagotto, E.
PY - 2006
Y1 - 2006
N2 - Using Monte Carlo simulations and the two eg -orbital model for manganites, the stability of the CE and A -type antiferromagnetic insulating states is analyzed when quenched disorder in the superexchange JAF between the t2g localized spins and in the on-site energies is introduced. At vanishing or small values of the electron-(Jahn-Teller) phonon coupling, the previously hinted "fragility" of these insulating states is studied in detail, focusing on their charge transport properties. This fragility is here found to induce a rapid transition from the insulator to a (poor) metallic state upon the introduction of disorder. A possible qualitative explanation is presented based on the close proximity in energy of ferromagnetic metallic phases, and also on percolative ideas valid at large disorder strength. The scenario is compared with previously discussed insulator-to-metal transitions in other contexts. This particularly severe effect of disorder must be present in other materials as well, in cases involving phases that arise as a compromise between very different tendencies, as it probably occurs with striped states in the cuprates.
AB - Using Monte Carlo simulations and the two eg -orbital model for manganites, the stability of the CE and A -type antiferromagnetic insulating states is analyzed when quenched disorder in the superexchange JAF between the t2g localized spins and in the on-site energies is introduced. At vanishing or small values of the electron-(Jahn-Teller) phonon coupling, the previously hinted "fragility" of these insulating states is studied in detail, focusing on their charge transport properties. This fragility is here found to induce a rapid transition from the insulator to a (poor) metallic state upon the introduction of disorder. A possible qualitative explanation is presented based on the close proximity in energy of ferromagnetic metallic phases, and also on percolative ideas valid at large disorder strength. The scenario is compared with previously discussed insulator-to-metal transitions in other contexts. This particularly severe effect of disorder must be present in other materials as well, in cases involving phases that arise as a compromise between very different tendencies, as it probably occurs with striped states in the cuprates.
UR - http://www.scopus.com/inward/record.url?scp=33745150358&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.73.224426
DO - 10.1103/PhysRevB.73.224426
M3 - Article
AN - SCOPUS:33745150358
SN - 1098-0121
VL - 73
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 22
M1 - 224426
ER -