Abstract
Half-quantum vortices in spin-triplet superconductors are predicted to host Majorana zero modes and may provide a viable platform for topological quantum computation. Recent works also suggested that, in thin mesoscopic rings, the superconducting pairing symmetry can be probed via Little-Parks-like magnetoresistance oscillations of periodicity Φ0 = h/2e that persist below the critical temperature. Here we use the London limit of Ginzburg-Landau theory to study these magnetoresistance oscillations resulting from thermal vortex tunneling in spin-triplet superconducting rings. For a range of temperatures in the presence of disorder, we find magnetoresistance oscillations with an emergent fractional periodicity Φ0/n, where the integer n ≥ 3 is entirely determined by the ratio of the spin and charge superfluid densities. These fractional oscillations can unambiguously confirm the spin-triplet nature of superconductivity and directly reveal the tunneling of half-quantum vortices in real-world candidate materials.
Original language | English |
---|---|
Article number | 133 |
Journal | Communications Physics |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2023 |
Funding
We thank Benjamin Lawrie and Yun-Yi Pai for experimental motivation as well as Eugene Dumitrescu and Chengyun Hua for helpful discussions. This research was sponsored by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). We thank Benjamin Lawrie and Yun-Yi Pai for experimental motivation as well as Eugene Dumitrescu and Chengyun Hua for helpful discussions. This research was sponsored by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).
Funders | Funder number |
---|---|
DOE Public Access Plan | |
United States Government | |
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences | |
Division of Materials Sciences and Engineering | DE-AC05-00OR22725 |