Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model

John Lagergren, Amanda Reeder, Franz Hamilton, Ralph C. Smith, Kevin B. Flores

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In this paper, we present a new method for the prediction and uncertainty quantification of data-driven multivariate systems. Traditionally, either mechanistic or non-mechanistic modeling methodologies have been used for prediction; however, it is uncommon for the two to be incorporated together. We compare the forecast accuracy of mechanistic modeling, using Bayesian inference, a non-mechanistic modeling approach based on state space reconstruction, and a novel hybrid methodology composed of the two for an age-structured population data set. The data come from cannibalistic flour beetles, in which it is observed that the adults preying on the eggs and pupae result in non-equilibrium population dynamics. Uncertainty quantification methods for the hybrid models are outlined and illustrated for these data. We perform an analysis of the results from Bayesian inference for the mechanistic model and hybrid models to suggest reasons why hybrid modeling methodology may enable more accurate forecasts of multivariate systems than traditional approaches.

Original languageEnglish
Pages (from-to)1578-1595
Number of pages18
JournalBulletin of Mathematical Biology
Volume80
Issue number6
DOIs
StatePublished - Jun 1 2018
Externally publishedYes

Funding

Acknowledgements The research was partially supported by Grants RTG/DMS-1246991 and DMS-1514929 from the National Science Foundation.

Keywords

  • Forecasting
  • State space reconstruction
  • Structured population model
  • Uncertainty quantification

Fingerprint

Dive into the research topics of 'Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model'. Together they form a unique fingerprint.

Cite this