TY - JOUR
T1 - Folding Coarse-Grained Oligomer Models with PyRosetta
AU - Fobe, Theodore L.
AU - Walker, Christopher C.
AU - Meek, Garrett A.
AU - Shirts, Michael R.
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/10/11
Y1 - 2022/10/11
N2 - Non-biological foldamers are a promising class of macromolecules that share similarities to classical biopolymers such as proteins and nucleic acids. Currently, designing novel foldamers is a non-trivial process, often involving many iterations of trial synthesis and characterization until folded structures are observed. In this work, we aim to tackle these foldamer design challenges using computational modeling techniques. We developed CG PyRosetta, an extension to the popular protein folding python package, PyRosetta, which introduces coarse-grained (CG) residues into PyRosetta, enabling the folding of toy CG foldamer models. Although these models are simplified, they can help explore overarching physical hypotheses about how oligomers can form. Through systematic variation of CG parameters in these models, we can investigate various folding hypotheses at the CG scale to inform the design process of new foldamer chemistries. In this study, we demonstrate CG PyRosetta's ability to identify minimum energy structures with a diverse structural search over a range of simple models, as well as two hypothesis-driven parameter scans investigating the effects of side-chain size and internal backbone angle on secondary structures. We are able to identify several types of secondary structures from single- and double-helices to sheet-like and knot-like structures. We show how side-chain size and backbone bond angle both play an important role in the structure and energetics of these toy models. Optimal side-chain sizes promote favorable packing of side chains, while specific backbone bond angles influence the specific helix type found in folded structures.
AB - Non-biological foldamers are a promising class of macromolecules that share similarities to classical biopolymers such as proteins and nucleic acids. Currently, designing novel foldamers is a non-trivial process, often involving many iterations of trial synthesis and characterization until folded structures are observed. In this work, we aim to tackle these foldamer design challenges using computational modeling techniques. We developed CG PyRosetta, an extension to the popular protein folding python package, PyRosetta, which introduces coarse-grained (CG) residues into PyRosetta, enabling the folding of toy CG foldamer models. Although these models are simplified, they can help explore overarching physical hypotheses about how oligomers can form. Through systematic variation of CG parameters in these models, we can investigate various folding hypotheses at the CG scale to inform the design process of new foldamer chemistries. In this study, we demonstrate CG PyRosetta's ability to identify minimum energy structures with a diverse structural search over a range of simple models, as well as two hypothesis-driven parameter scans investigating the effects of side-chain size and internal backbone angle on secondary structures. We are able to identify several types of secondary structures from single- and double-helices to sheet-like and knot-like structures. We show how side-chain size and backbone bond angle both play an important role in the structure and energetics of these toy models. Optimal side-chain sizes promote favorable packing of side chains, while specific backbone bond angles influence the specific helix type found in folded structures.
UR - http://www.scopus.com/inward/record.url?scp=85139425402&partnerID=8YFLogxK
U2 - 10.1021/acs.jctc.2c00519
DO - 10.1021/acs.jctc.2c00519
M3 - Article
C2 - 36179376
AN - SCOPUS:85139425402
SN - 1549-9618
VL - 18
SP - 6354
EP - 6369
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 10
ER -