Abstract
This research aims to describe the behavior of C45 steel and provide better understanding of the thermomechanical ductile failure that occurs due to accumulation of microcracks and voids along with plastic deformation to enable proper structural design, and hence provide better serviceability. A series of quasi-static tensile tests are conducted on C45 steel at a range of temperatures between 298 K and 923 K for strain rates up to 0.15 s-1. Drop hammer dynamic tests are also performed considering different masses and heights to study the material response at higher strain rates. Scanning electron microscopy (SEM) images are taken to quantify the density of microcracks and voids of each fractured specimens, which are needed to define the evolution of internal defects using an energy-based damage model. The coupling effect of damage and plasticity is incorporated to accurately define the constitutive relation that can simulate the different structural responses of this material. Good correlation was observed between the proposed model predictions and experiments particularly at regions where dynamic strain aging (DSA) is not present.
Original language | English |
---|---|
Article number | 021012 |
Journal | Journal of Engineering Materials and Technology |
Volume | 139 |
Issue number | 2 |
DOIs | |
State | Published - Apr 1 2017 |
Externally published | Yes |
Keywords
- C45 steel
- constitutive modeling
- damage
- strain rate
- temperature