TY - JOUR
T1 - Flexural phonons and thermal transport in graphene
AU - Lindsay, L.
AU - Broido, D. A.
AU - Mingo, Natalio
PY - 2010/9/15
Y1 - 2010/9/15
N2 - We show through an exact numerical solution of the phonon Boltzmann equation that the lattice thermal conductivity of graphene is dominated by contributions from the out-of-plane or flexural phonon modes, previously thought to be negligible. We connect this unexpected result to the anomalously large density of states of flexural phonons compared to their in-plane counterparts and to a symmetry-based selection rule that significantly restricts anharmonic phonon-phonon scattering of the flexural modes. The result is found to hold in the presence of the ripples known to occur in graphene, phonon-isotopic impurity scattering, and rigidity of the flexural phonon branch arising from the long-wavelength coupling between flexural and in-plane modes. Finally, accurate inclusion of the momentum conserving Normal phonon-phonon scattering processes within the context of a full solution of the phonon Boltzmann equation are shown to be essential in accurately describing the graphene thermal conductivity, in contrast to the more commonly used relaxation time and long wavelength approximations.
AB - We show through an exact numerical solution of the phonon Boltzmann equation that the lattice thermal conductivity of graphene is dominated by contributions from the out-of-plane or flexural phonon modes, previously thought to be negligible. We connect this unexpected result to the anomalously large density of states of flexural phonons compared to their in-plane counterparts and to a symmetry-based selection rule that significantly restricts anharmonic phonon-phonon scattering of the flexural modes. The result is found to hold in the presence of the ripples known to occur in graphene, phonon-isotopic impurity scattering, and rigidity of the flexural phonon branch arising from the long-wavelength coupling between flexural and in-plane modes. Finally, accurate inclusion of the momentum conserving Normal phonon-phonon scattering processes within the context of a full solution of the phonon Boltzmann equation are shown to be essential in accurately describing the graphene thermal conductivity, in contrast to the more commonly used relaxation time and long wavelength approximations.
UR - http://www.scopus.com/inward/record.url?scp=77957691219&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.82.115427
DO - 10.1103/PhysRevB.82.115427
M3 - Article
AN - SCOPUS:77957691219
SN - 1098-0121
VL - 82
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 11
M1 - 115427
ER -