Abstract
Integration of energy storage with a grid-tied photovoltaic (PV) generation system in conventional residential and commercial applications uses legacy PV power electronics topologies. This paper presents a novel solar PV power electronics system which allows a seamless integration of energy storage with partial power processing technique. In the proposed topology, a dual active bridge DC-DC converter is applied to configure partially-rated power electronics system with bi-directional power flow, galvanic isolation, a high voltage boosting gain, and results in high conversion efficiency. The proposed topology is explained in detail and analyzed with the quantitative approach to verify the improvement of system efficiency and power density in the DC-DC power conversion unit: 99.5% efficiency and 3.3kW rated power for 7.5kW PV and 2.5kW battery system. Also, the steady-state operation of the proposed universal optimizer is verified through the controller hardware-in-the-loop test.
Original language | English |
---|---|
Title of host publication | APEC 2018 - 33rd Annual IEEE Applied Power Electronics Conference and Exposition |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3244-3249 |
Number of pages | 6 |
ISBN (Electronic) | 9781538611807 |
DOIs | |
State | Published - Apr 18 2018 |
Externally published | Yes |
Event | 33rd Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2018 - San Antonio, United States Duration: Mar 4 2018 → Mar 8 2018 |
Publication series
Name | Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC |
---|---|
Volume | 2018-March |
Conference
Conference | 33rd Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2018 |
---|---|
Country/Territory | United States |
City | San Antonio |
Period | 03/4/18 → 03/8/18 |
Funding
ACKNOWLEDGMENT This work is supported by Energy Production and Infrastructure Center (EPIC), Electrical and Computer Engineering Department at the University of North Carolina at Charlotte.
Keywords
- Battery-ready
- Dual active bridge dc-dc converter
- Energy storage
- Grid-connected pv inverter
- High efficiency
- Partial power processing
- Seamless pv-battery integration
- Universal optimizer