First cosmology results using Type Ia supernova from the Dark Energy Survey: Simulations to correct supernova distance biases

R. Kessler, D. Brout, C. B. D'Andrea, T. M. Davis, S. R. Hinton, A. G. Kim, J. Lasker, C. Lidman, E. MacAulay, A. Möller, M. Sako, D. Scolnic, M. Smith, M. Sullivan, B. Zhang, P. Andersen, J. Asorey, A. Avelino, J. Calcino, D. CarolloP. Challis, M. Childress, A. Clocchiatti, S. Crawford, A. V. Filippenko, R. J. Foley, K. Glazebrook, J. K. Hoormann, E. Kasai, R. P. Kirshner, G. F. Lewis, K. S. Mandel, M. March, E. Morganson, D. Muthukrishna, P. Nugent, Y. C. Pan, N. E. Sommer, E. Swann, R. C. Thomas, B. E. Tucker, S. A. Uddin, T. M.C. Abbott, S. Allam, J. Annis, S. Avila, M. Banerji, K. Bechtol, E. Bertin, D. Brooks, E. Buckley-Geer, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander, M. Crocce, L. N. Da Costa, C. Davis, J. De Vicente, S. Desai, H. T. Diehl, P. Doel, T. F. Eifler, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido, E. Gaztanaga, D. W. Gerdes, D. Gruen, R. A. Gruendl, G. Gutierrez, W. G. Hartley, D. L. Hollowood, K. Honscheid, D. J. James, M. W.G. Johnson, M. D. Johnson, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, T. S. Li, M. Lima, J. L. Marshall, P. Martini, F. Menanteau, C. J. Miller, R. Miquel, B. Nord, A. A. Plazas, A. Roodman, E. Sanchez, V. Scarpine, R. Schindler, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, M. Soares-Santos, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, A. R. Walker, Y. Zhang

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

We describe catalogue-level simulations of Type Ia supernova (SN Ia) light curves in the Dark Energy Survey Supernova Program (DES-SN) and in low-redshift samples from the Center for Astrophysics (CfA) and the Carnegie Supernova Project (CSP). These simulations are used to model biases from selection effects and light-curve analysis and to determine bias corrections for SN Ia distance moduli that are used to measure cosmological parameters. To generate realistic light curves, the simulation uses a detailed SN Ia model, incorporates information from observations (point spread function, sky noise, zero-point), and uses summary information (e.g. detection efficiency versus signal-to-noise ratio) based on 10 000 fake SN light curves whose fluxes were overlaid on images and processed with our analysis pipelines. The quality of the simulation is illustrated by predicting distributions observed in the data. Averaging within redshift bins, we find distance modulus biases up to 0.05 mag over the redshift ranges of the low-z and DES-SN samples. For individual events, particularly those with extreme red or blue colour, distance biases can reach 0.4 mag. Therefore, accurately determining bias corrections is critical for precision measurements of cosmological parameters. Files used to make these corrections are available at https://des.ncsa.illinois.edu/releases/sn.

Original languageEnglish
Pages (from-to)1171-1187
Number of pages17
JournalMonthly Notices of the Royal Astronomical Society
Volume485
Issue number1
DOIs
StatePublished - May 1 2019

Funding

The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA programme of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Frame-work Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovac¸ão, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. This work was completed in part with resources provided by the University of Chicago Research Computing Center. RK is supported by DOE grant DE-AC02-76CH03000. DS is supported by NASA through Hubble Fellowship grant HST-HF2-51383.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The U.Penn group was supported by DOE grant DE-FOA-0001358 and NSF grant AST-1517742. AVF’s group at U.C. Berkeley is grateful for financial assistance from NSF grant AST-1211916, the Christopher R. Redlich Fund, the TABASGO Foundation, and the Miller Institute for Basic Research in Science.

Keywords

  • (cosmology:) dark energy
  • cosmology
  • supernovae
  • techniques

Fingerprint

Dive into the research topics of 'First cosmology results using Type Ia supernova from the Dark Energy Survey: Simulations to correct supernova distance biases'. Together they form a unique fingerprint.

Cite this