First constraint on coherent elastic neutrino-nucleus scattering in argon

D. Akimov, J. B. Albert, P. An, C. Awe, P. S. Barbeau, B. Becker, V. Belov, M. A. Blackston, A. Bolozdynya, B. Cabrera-Palmer, M. Cervantes, J. I. Collar, R. L. Cooper, J. Daughhetee, M. Del Valle Coello, J. A. Detwiler, M. D'Onofrio, Y. Efremenko, E. M. Erkela, S. R. ElliottL. Fabris, M. Febbraro, W. Fox, A. Galindo-Uribarri, M. P. Green, K. S. Hansen, M. R. Heath, S. Hedges, T. Johnson, M. Kaemingk, L. J. Kaufman, A. Khromov, A. Konovalov, E. Kozlova, A. Kumpan, L. Li, J. T. Librande, J. M. Link, J. Liu, K. Mann, D. M. Markoff, H. Moreno, P. E. Mueller, J. Newby, D. S. Parno, S. Penttila, D. Pershey, D. Radford, R. Rapp, H. Ray, J. Raybern, O. Razuvaeva, D. Reyna, G. C. Rich, D. Rudik, J. Runge, D. J. Salvat, K. Scholberg, A. Shakirov, G. Simakov, G. Sinev, W. M. Snow, V. Sosnovtsev, B. Suh, R. Tayloe, K. Tellez-Giron-Flores, R. T. Thornton, I. Tolstukhin, J. Vanderwerp, R. L. Varner, C. J. Virtue, G. Visser, C. Wiseman, T. Wongjirad, J. Yang, Y. R. Yen, J. Yoo, C. H. Yu, J. Zettlemoyer

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Coherent elastic neutrino-nucleus scattering (CEvNS) is calculated to be the dominant neutrino scattering channel for neutrinos of energy Eν<100 MeV. We report a limit for this process from data collected in an engineering run of the 29 kg CENNS-10 liquid argon detector located 27.5 m from the pion decay-at-rest neutrino source at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) with 4.2×1022 protons on target. The dataset provided constraints on beam-related backgrounds critical for future measurements and yielded <7.4 candidate CEvNS events which implies a cross section for the process, averaged over the SNS pion decay-at-rest flux, of <3.4×10-39 cm2, a limit within twice the Standard Model prediction. This is the first limit on CEvNS from an argon nucleus and confirms the earlier CsI[Na] nonstandard neutrino interaction constraints from the collaboration. This run demonstrated the feasibility of the ongoing experimental effort to detect CEvNS with liquid argon.

Original languageEnglish
Article number115020
JournalPhysical Review D
Volume100
Issue number11
DOIs
StatePublished - Dec 9 2019

Funding

The COHERENT collaboration acknowledges the generous resources provided by the ORNL Spallation Neutron Source, a DOE Office of Science User Facility, and thanks Fermilab for the continuing loan of the CENNS-10 detector. We also acknowledge support from the Alfred P. Sloan Foundation, the Consortium for Nonproliferation Enabling Capabilities, the Institute for Basic Science (Korea, Grant No. IBS-R017-G1-2019-a00), the National Science Foundation, the Russian Foundation for Basic Research (Project No. 17-02-01077 A), and the U.S. Department of Energy, Office of Science. Laboratory Directed Research and Development funds from ORNL and Lawrence Livermore National Laboratory also supported this project. This research used the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). [1] 1 D. Z. Freedman , Phys. Rev. D 9 , 1389 ( 1974 ). PRVDAQ 0556-2821 10.1103/PhysRevD.9.1389 [2] 2a V. B. Kopeliovich and L. L. Frankfurt , Pis’ma Zh. Eksp. Teor. Fiz. 19 , 236 ( 1974 ) PZETAB 0370-274X 2b [ V. B. Kopeliovich and L. L. Frankfurt JETP Lett. 19 , 145 ( 1974 )]. JTPLA2 0021-3640 [3] 3 P. S. Amanik and G. C. McLaughlin , J. Phys. G 36 , 015105 ( 2009 ). JPGPED 0954-3899 10.1088/0954-3899/36/1/015105 [4] 4 M. Cadeddu , C. Giunti , Y. F. Li , and Y. Y. Zhang , Phys. Rev. Lett. 120 , 072501 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.072501 [5] 5 M. Cadeddu and F. Dordei , Phys. Rev. D 99 , 033010 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.033010 [6] 6 K. Patton , J. Engel , G. C. McLaughlin , and N. Schunck , Phys. Rev. C 86 , 024612 ( 2012 ). PRVCAN 0556-2813 10.1103/PhysRevC.86.024612 [7] 7 D. A. Sierra , J. Liao , and D. Marfatia , J. High Energy Phys. 06 ( 2019 ) 141 . JHEPFG 1029-8479 10.1007/JHEP06(2019)141 [8] 8 M. Hoferichter , P. Klos , J. Menéndez , and A. Schwenk , Phys. Rev. D 99 , 055031 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.055031 [9] 9 J. Barranco , O. G. Miranda , and T. I. Rashba , J. High Energy Phys. 12 ( 2005 ) 021 . JHEPFG 1029-8479 10.1088/1126-6708/2005/12/021 [10] 10 K. Scholberg , Phys. Rev. D 73 , 033005 ( 2006 ). PRVDAQ 1550-7998 10.1103/PhysRevD.73.033005 [11] 11 J. Barranco , O. G. Miranda , and T. I. Rashba , Phys. Rev. D 76 , 073008 ( 2007 ). PRVDAQ 1550-7998 10.1103/PhysRevD.76.073008 [12] 12 B. Dutta , R. Mahapatra , L. E. Strigari , and J. W. Walker , Phys. Rev. D 93 , 013015 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.013015 [13] 13 D. K. Papoulias and T. S. Kosmas , Phys. Rev. D 97 , 033003 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.033003 [14] 14 L. M. Krauss , Phys. Lett. B 269 , 407 ( 1991 ). PYLBAJ 0370-2693 10.1016/0370-2693(91)90192-S [15] 15a P. Coloma and T. Schwetz , Phys. Rev. D 94 , 055005 ( 2016 ); PRVDAQ 2470-0010 10.1103/PhysRevD.94.055005 15b P. Coloma and T. Schwetz Phys. Rev. D 95 , 079903(E) ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.079903 [16] 16 P. Coloma , P. B. Denton , M. C. Gonzalez-Garcia , M. Maltoni , and T. Schwetz , J. High Energy Phys. 04 ( 2017 ) 116 . JHEPFG 1029-8479 10.1007/JHEP04(2017)116 [17] 17 P. Coloma , M. C. Gonzalez-Garcia , M. Maltoni , and T. Schwetz , Phys. Rev. D 96 , 115007 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.115007 [18] 18 D. Akimov ( COHERENT Collaboration ) , Science 357 , 1123 ( 2017 ). SCIEAS 0036-8075 10.1126/science.aao0990 [19] 19 R. Tayloe ( COHERENT Collaboration ) , J. Instrum. 13 , C04005 ( 2018 ). JIONAS 1748-0221 10.1088/1748-0221/13/04/C04005 [20] 20 S. J. Brice , Phys. Rev. D 89 , 072004 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.072004 [21] 21 V. M. Gehman , S. R. Seibert , K. Rielage , A. Hime , Y. Sun , D. M. Mei , J. Maassen , and D. Moore , Nucl. Instrum. Methods Phys. Res., Sect. A 654 , 116 ( 2011 ). NIMAER 0168-9002 10.1016/j.nima.2011.06.088 [22] 22 C. Benson , G. Orebi Gann , and V. Gehman , Eur. Phys. J. C 78 , 329 ( 2018 ). EPCFFB 1434-6044 10.1140/epjc/s10052-018-5807-z [23] 23 D. N. McKinsey , C. R. Brome , J. S. Butterworth , R. Golub , K. Habicht , P. R. Huffman , S. K. Lamoreaux , C. E. H. Mattoni , and J. M. Doyle , Nucl. Instrum. Methods Phys. Res., Sect. B 132 , 351 ( 1997 ). NIMBEU 0168-583X 10.1016/S0168-583X(97)00409-6 [24] 24 P. Agnes ( DarkSide Collaboration ) , Phys. Lett. B 743 , 456 ( 2015 ). PYLBAJ 0370-2693 10.1016/j.physletb.2015.03.012 [25] 25 P. Agnes ( DarkSide Collaboration ) , Phys. Rev. D 98 , 102006 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.102006 [26] 26 R. Ajaj ( DEAP Collaboration ) , Phys. Rev. D 100 , 022004 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.100.022004 [27] 27 C. Adams ( The MicroBooNE Collaboration ) , Phys. Rev. D 99 , 091102 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.99.091102 [28] 28 T. Doke , K. Masuda , and E. Shibamura , Nucl. Instrum. Methods Phys. Res., Sect. A 291 , 617 ( 1990 ). NIMAER 0168-9002 10.1016/0168-9002(90)90011-T [29] 29 D. Gastler , E. Kearns , A. Hime , L. C. Stonehill , S. Seibert , J. Klein , W. H. Lippincott , D. N. McKinsey , and J. A. Nikkel , Phys. Rev. C 85 , 065811 ( 2012 ). PRVCAN 0556-2813 10.1103/PhysRevC.85.065811 [30] 30 H. Cao ( SCENE Collaboration ) , Phys. Rev. D 91 , 092007 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.092007 [31] 31 W. Creus , Y. Allkofer , C. Amsler , A. D. Ferella , J. Rochet , L. Scotto-Lavina , and M. Walter , J. Instrum. 10 , P08002 ( 2015 ). JIONAS 1748-0221 10.1088/1748-0221/10/08/P08002 [32] 32 P. Agnes , Phys. Rev. D 97 , 112005 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.112005 [33] 33 A. Hitachi , T. Takahashi , N. Funayama , K. Masuda , J. Kikuchi , and T. Doke , Phys. Rev. B 27 , 5279 ( 1983 ). PRBMDO 0163-1829 10.1103/PhysRevB.27.5279 [34] 34 P. A. Amaudruz ( DEAP Collaboration ) , Astropart. Phys. 85 , 1 ( 2016 ). APHYEE 0927-6505 10.1016/j.astropartphys.2016.09.002 [35] 35 P. Benetti , R. Acciarri , F. Adamo , B. Baibussinov , M. Baldo-Ceolin , M. Belluco , F. Calaprice , E. Calligarich , M. Cambiaghi , and F. Carbonara , Astropart. Phys. 28 , 495 ( 2008 ). APHYEE 0927-6505 10.1016/j.astropartphys.2007.08.002 [36] 36a W. H. Lippincott , K. J. Coakley , D. Gastler , A. Hime , E. Kearns , D. N. McKinsey , J. A. Nikkel , and L. C. Stonehill , Phys. Rev. C 78 , 035801 ( 2008 ); PRVCAN 0556-2813 10.1103/PhysRevC.78.035801 36b W. H. Lippincott , K. J. Coakley , D. Gastler , A. Hime , E. Kearns , D. N. McKinsey , J. A. Nikkel , and L. C. Stonehill Phys. Rev. C 81 , 039901(E) ( 2010 ). PRVCAN 0556-2813 10.1103/PhysRevC.81.039901 [37] 37 H. O. Back , A. Alton , F. Calaprice , C. Galbiati , A. Goretti , C. Kendziora , B. Loer , D. Montanari , P. Mosteiro , and S. Pordes , Phys. Procedia 37 , 1105 ( 2012 ). PPHRCK 1875-3892 10.1016/j.phpro.2012.04.099 [38] 38 H. O. Back , arXiv:1204.6024 . [39] 39a P. Agnes ( DarkSide Collaboration ) , Phys. Rev. D 93 , 081101 ( 2016 ); PRVDAQ 2470-0010 10.1103/PhysRevD.93.081101 39b P. Agnes ( DarkSide Collaboration ) Phys. Rev. D 95 , 069901(A) ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.069901 [40] 40 R. Cooper , L. Garrison , H. O. Meyer , T. Mikev , L. Rebenitsch , and R. Tayloe , in Particles and Fields. Proceedings, Meeting of the Division of the American Physical Society, DPF 2011, Providence, USA, 2011 ( 2011 ). [41] 41 M. R. Heath ,

Fingerprint

Dive into the research topics of 'First constraint on coherent elastic neutrino-nucleus scattering in argon'. Together they form a unique fingerprint.

Cite this