Abstract
Ferrotoroidal order, which represents a spontaneous arrangement of toroidal moments, has recently been found in a few linear magnetoelectric materials. However, tuning toroidal moments in these materials is challenging. Here, we report switching between ferritoroidal and ferrotoroidal phases by a small magnetic field, in a chiral triangular-lattice magnet BaCoSiO4 with tri-spin vortices. Upon applying a magnetic field, we observe multi-stair metamagnetic transitions, characterized by equidistant steps in the net magnetic and toroidal moments. This highly unusual ferri-ferroic order appears to come as a result of an unusual hierarchy of frustrated isotropic exchange couplings revealed by first principle calculations, and the antisymmetric exchange interactions driven by the structural chirality. In contrast to the previously known toroidal materials identified via a linear magnetoelectric effect, BaCoSiO4 is a qualitatively new multiferroic with an unusual coupling between several different orders, and opens up new avenues for realizing easily tunable toroidal orders.
Original language | English |
---|---|
Article number | 5339 |
Journal | Nature Communications |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2021 |
Funding
The work at Oak Ridge National Laboratory (ORNL) was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Early Career Research Program Award KC0402020, under Contract No. DE-AC05-00OR22725. This research used resources at the High Flux Isotope Reactor and the Spallation Neutron Source, the DOE Office of Science User Facility operated by ORNL. The work at Rutgers University was supported by the DOE under Grant No. DOE: DE-FG02-07ER46382. The work of D.K. was funded by the Deutsche For-schungsgemeinschaft (DFG, German Research Foundation)—Project number 277146847—CRC 1238. I.I.M. acknowledges support from DOE under Grant No. DESC0021089. The National High Magnetic Field Laboratory is funded by the US National Science Foundation through Cooperative Grant No. DMR-1157490, the US DOE, and the State of Florida. N.H. acknowledges support from DOE BES project “Science of 100 tesla”.