Few-cycle Regime Atomic Force Microscopy

Enrique A. López-Guerra, Suhas Somnath, Santiago D. Solares, Stephen Jesse, Gabriele Ferrini

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Traditionally, dynamic atomic force microscopy (AFM) techniques are based on the analysis of the quasi-steady state response of the cantilever deflection in terms of Fourier analysis. Here we describe a technique that instead exploits the often disregarded transient response of the cantilever through a relatively modern mathematical tool, which has caused important developments in several scientific fields but that is still quite unknown in the AFM context: the wavelet analysis. This tool allows us to localize the time-varying spectral composition of the initial oscillations of the cantilever deflection when an impulsive excitation is given (as in the band excitation method), a mode that we call the few-cycle regime. We show that this regime encodes very meaningful information about the tip-sample interaction in a unique and extremely sensitive manner. We exploit this high sensitivity to gain detailed insight into multiple physical parameters that perturb the dynamics of the AFM probe, such as the tip radius, Hamaker constant, sample’s elastic modulus and height of an adsorbed water layer. We validate these findings with experimental evidence and computational simulations and show a feasible path towards the simultaneous retrieval of multiple physical parameters.

Original languageEnglish
Article number12721
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

Funding

G.F. acknowledges financial support from the MIUR - PRIN 2017 grant in the frame of the aSTAR project (2017RKWTMY_003). This work has been partially supported by the Università Cattolica del Sacro Cuore through D.3.1 and D.2.2 grants. The experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility, under the user project contract CNMS2014-104.

FundersFunder number
Office of ScienceCNMS2014-104
Oak Ridge National Laboratory
Ministero dell’Istruzione, dell’Università e della Ricerca2017RKWTMY_003
Università Cattolica del Sacro Cuore

    Fingerprint

    Dive into the research topics of 'Few-cycle Regime Atomic Force Microscopy'. Together they form a unique fingerprint.

    Cite this