Feasibility analysis of utilizing maraging steel in a wire arc additive process for high-strength tooling applications

Christopher Masuo, Andrzej Nycz, Mark W. Noakes, Derek Vaughan, Niyanth Sridharan

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

Traditional tool and die development require skilled labor, long lead time, and is highly expensive to produce. Metal Big Area Additive Manufacturing (mBAAM) is a wire-arc additive process that utilizes a metal inert gas (MIG) welding robot to print large-scale parts layer-by-layer. By using mBAAM, tooling can be manufactured rapidly with low costs. For cold work tooling applications, a high hardness level is desired to increase the life-time of the tool. A promising material that can achieve this is maraging steel. Maraging steel is known to have good weldability; however, further testing must be conducted to ensure it is feasible for printing using mBAAM. In this paper, initial process parameters were obtained by printing single bead welds. Multi-bead walls were then printed with some refinement of process parameters to construct homogenous outer features of the walls. Lastly, the walls were heat-treated, and hardness data was gathered through Rockwell Hardness tests.

Original languageEnglish
Pages684-692
Number of pages9
StatePublished - 2019
Event30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019 - Austin, United States
Duration: Aug 12 2019Aug 14 2019

Conference

Conference30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019
Country/TerritoryUnited States
CityAustin
Period08/12/1908/14/19

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Energy Efficiency & Renewable Energy, Advanced Manufacturing Office, under contract number DE-AC05-00OR22725. The authors would like to thank Lincoln Electric and Wolf Robotics for collaborating with us in development and providing the Wolf wire-arc system. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fingerprint

Dive into the research topics of 'Feasibility analysis of utilizing maraging steel in a wire arc additive process for high-strength tooling applications'. Together they form a unique fingerprint.

Cite this