Fatigue behavior of spent nuclear fuel rods in simulated transportation environment

Hong Wang, Jy An John Wang, Hao Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Nuclear fuel rod is composed of cladding tube and a specified number of fuel pellets contained. In the United States, spent nuclear fuel (SNF) is expected to be transported to at least one storage facility before permanent disposal. The fatigue behavior of spent nuclear fuel (SNF) rods under reversed cyclic bending must be understood in order to evaluate their vibration integrity in a transportation environment. This is especially important for high-burnup SNFs (>45 GWd/MTU). This report presents the experimental results related to Zircaloy (Zry)-4-based surrogate rods and high-burnup SNFs, based on recent work performed at Oak Ridge National Laboratory (ORNL). The surrogate rod was made of Zry-4 cladding and alumina pellets, and high-burnup fuel rods were discharged from H.B. Robinson pressurized water reactor. The reversed cyclic.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858004
DOIs
StatePublished - 2017
EventASME 2017 Pressure Vessels and Piping Conference, PVP 2017 - Waikoloa, United States
Duration: Jul 16 2017Jul 20 2017

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6B-2017
ISSN (Print)0277-027X

Conference

ConferenceASME 2017 Pressure Vessels and Piping Conference, PVP 2017
Country/TerritoryUnited States
CityWaikoloa
Period07/16/1707/20/17

Funding

1 Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
Office of Nuclear Regulatory Research
U.S. Department of EnergyDE-AC05-00OR22725
U.S. Nuclear Regulatory Commission
National Research Council

    Fingerprint

    Dive into the research topics of 'Fatigue behavior of spent nuclear fuel rods in simulated transportation environment'. Together they form a unique fingerprint.

    Cite this