Fast-ion transport in q min > 2, high- β steady-state scenarios on DIII-D

C. T. Holcomb, W. W. Heidbrink, J. R. Ferron, M. A. Van Zeeland, A. M. Garofalo, W. M. Solomon, X. Gong, D. Mueller, B. Grierson, E. M. Bass, C. Collins, J. M. Park, K. Kim, T. C. Luce, F. Turco, D. C. Pace, Q. Ren, M. Podesta

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high- q min confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min > 2 that target the typical range of q 95 = 5-7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable βN. In contrast, similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min > 3 plasmas to higher β P with q 95 = 11-12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high- q min scenario, the high β P cases have shorter slowing-down time and lower ∇ β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower- q 95, high- q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.

Original languageEnglish
Article number055904
JournalPhysics of Plasmas
Volume22
Issue number5
DOIs
StatePublished - May 1 2015

Fingerprint

Dive into the research topics of 'Fast-ion transport in q min > 2, high- β steady-state scenarios on DIII-D'. Together they form a unique fingerprint.

Cite this