Abstract
We use graph convolutional neural networks (GCNNs) to produce fast and accurate predictions of the total energy of solid solution binary alloys. GCNNs allow us to abstract the lattice structure of a solid material as a graph, whereby atoms are modeled as nodes and metallic bonds as edges. This representation naturally incorporates information about the structure of the material, thereby eliminating the need for computationally expensive data pre-processing which would be required with standard neural network (NN) approaches. We train GCNNs on ab-initio density functional theory (DFT) for copper-gold (CuAu) and iron-platinum (FePt) data that has been generated by running the LSMS-3 code, which implements a locally self-consistent multiple scattering method, on OLCF supercomputers Titan and Summit. GCNN outperforms the ab-initio DFT simulation by orders of magnitude in terms of computational time to produce the estimate of the total energy for a given atomic configuration of the lattice structure. We compare the predictive performance of GCNN models against a standard NN such as dense feedforward multi-layer perceptron (MLP) by using the root-mean-squared errors to quantify the predictive quality of the deep learning (DL) models. We find that the attainable accuracy of GCNNs is at least an order of magnitude better than that of the MLP.
Original language | English |
---|---|
Title of host publication | Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation - 21st Smoky Mountains Computational Sciences and Engineering, SMC 2021, Revised Selected Papers |
Editors | [given-name]Jeffrey Nichols, [given-name]Arthur ‘Barney’ Maccabe, James Nutaro, Swaroop Pophale, Pravallika Devineni, Theresa Ahearn, Becky Verastegui |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 79-98 |
Number of pages | 20 |
ISBN (Print) | 9783030964979 |
DOIs | |
State | Published - 2022 |
Event | 21st Smoky Mountains Computational Sciences and Engineering Conference, SMC 2021 - Virtual, Online Duration: Oct 18 2021 → Oct 20 2021 |
Publication series
Name | Communications in Computer and Information Science |
---|---|
Volume | 1512 CCIS |
ISSN (Print) | 1865-0929 |
ISSN (Electronic) | 1865-0937 |
Conference
Conference | 21st Smoky Mountains Computational Sciences and Engineering Conference, SMC 2021 |
---|---|
City | Virtual, Online |
Period | 10/18/21 → 10/20/21 |
Funding
This work was supported in part by the Office of Science of the Department of Energy and by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory. This research is sponsored by the Artificial Intelligence Initiative as part of the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. This work used resources of the Oak Ridge Leadership Computing Facility, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy. gov/downloads/doe-public-access-plan).