TY - GEN
T1 - Failure modes analysis for the MSU RIA driver linac
AU - Wu, X.
AU - Doleans, M.
AU - Gorelov, D.
AU - Grimm, T. L.
AU - Marti, F.
AU - York, R. C.
PY - 2005
Y1 - 2005
N2 - Previous end-to-end beam dynamics simulation studies [1] using experimentally-based input beam parameters [2], including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by Michigan State University (MSU) has transverse and longitudinal acceptances more than adequate to accelerate light and heavy ions to final energies ≥ 400 MeV/u with beam powers of 100 to 400 kW. Further beam dynamics studies [3] were carried out using a new beam envelope code recently developed at MSU to optimize the setting of the rf phase and amplitude of the cavities throughout the linac. During linac operation, equipment loss due to, for example, cavity contamination, problems with cryogenic systems, or failure of rf or power supply systems, can lead to, at least, a temporary loss of some of cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with some failed elements. In order to prove the flexibility and robustness of the driver linac lattice design, beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes. The result of these beam dynamics studies is presented in this paper.
AB - Previous end-to-end beam dynamics simulation studies [1] using experimentally-based input beam parameters [2], including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by Michigan State University (MSU) has transverse and longitudinal acceptances more than adequate to accelerate light and heavy ions to final energies ≥ 400 MeV/u with beam powers of 100 to 400 kW. Further beam dynamics studies [3] were carried out using a new beam envelope code recently developed at MSU to optimize the setting of the rf phase and amplitude of the cavities throughout the linac. During linac operation, equipment loss due to, for example, cavity contamination, problems with cryogenic systems, or failure of rf or power supply systems, can lead to, at least, a temporary loss of some of cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with some failed elements. In order to prove the flexibility and robustness of the driver linac lattice design, beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes. The result of these beam dynamics studies is presented in this paper.
UR - http://www.scopus.com/inward/record.url?scp=33847106936&partnerID=8YFLogxK
U2 - 10.1109/PAC.2005.1590940
DO - 10.1109/PAC.2005.1590940
M3 - Conference contribution
AN - SCOPUS:33847106936
SN - 0780388593
SN - 9780780388598
T3 - Proceedings of the IEEE Particle Accelerator Conference
SP - 1868
EP - 1870
BT - Proceedings of the Particle Accelerator Conference, PAC 2005
T2 - Particle Accelerator Conference, PAC 2005
Y2 - 16 May 2005 through 20 May 2005
ER -