Face recognition algorithm bias: Performance differences on images of children and adults

Nisha Srinivas, Karl Ricanek, Dana Michalski, David S. Bolme, Michael King

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

44 Scopus citations

Abstract

In this work, we examine if current state-of-the-art deep learning face recognition systems exhibit a negative bias (i.e., poorer performance) for children when compared to the performance obtained on adults. The systems selected for this work are five top performing commercial-off-the-shelf face recognition systems, two government-off-the-shelf face recognition systems and one open-source face recognition solution. The datasets used to evaluate the performance of the systems are both unconstrained in age, pose, illumination, and expression and are publicly available. These datasets are indicative of photo journalistic face datasets published and evaluated on over the last few years. Our findings show a negative bias for each algorithm on children. Genuine and imposter distributions highlight the performance bias between the datasets further supporting the need for a deeper investigation into algorithm bias as a function of age cohorts. To combat the performance decline on the child demographic, several score-level fusion strategies were evaluated. This work identifies the best score-level fusion technique for the child demographic.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
PublisherIEEE Computer Society
Pages2269-2277
Number of pages9
ISBN (Electronic)9781728125060
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2019-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
Country/TerritoryUnited States
CityLong Beach
Period06/16/1906/20/19

Funding

∗This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fingerprint

Dive into the research topics of 'Face recognition algorithm bias: Performance differences on images of children and adults'. Together they form a unique fingerprint.

Cite this