TY - GEN
T1 - Extrusion deposition additive manufacturing utilizing high glass transition temperature latent cured epoxy systems
AU - Lindahl, John
AU - Hershey, Christopher
AU - Gladysz, Gary
AU - Mishra, Vinay
AU - Shah, Karana
AU - Kunc, Vlastimil
N1 - Publisher Copyright:
Copyright 2019. Used by the Society of the Advancement of Material and Process Engineering with permission.
PY - 2019
Y1 - 2019
N2 - This paper investigates the formulation, chemo-rheological properties, and extrusion deposition additive manufacturing (AM) of high glass transition temperature epoxies. Currently there are two methods of using thermoset materials in extrusion deposition AM. The first approach uses a reactive material that will fully cross-link during the build process. The second approach, which is explored in this paper, uses a reactive material that requires a thermal curing cycle after deposition is completed. Yield stress fluids for successful deposition were produced by blending various ratios of rheology modifying fillers into latent curing epoxy systems. After analyzing the rheological properties of the various blends via shear, temperature, and cure rate, the preferred formulation was selected. Test specimens for flexural analysis and dynamic mechanical analysis were printed from down selected combinations. This work resulted in the identification of key parameters for printing latent cured epoxy systems that will be scaled for the first large scale 3D printed epoxy for composite tooling applications.
AB - This paper investigates the formulation, chemo-rheological properties, and extrusion deposition additive manufacturing (AM) of high glass transition temperature epoxies. Currently there are two methods of using thermoset materials in extrusion deposition AM. The first approach uses a reactive material that will fully cross-link during the build process. The second approach, which is explored in this paper, uses a reactive material that requires a thermal curing cycle after deposition is completed. Yield stress fluids for successful deposition were produced by blending various ratios of rheology modifying fillers into latent curing epoxy systems. After analyzing the rheological properties of the various blends via shear, temperature, and cure rate, the preferred formulation was selected. Test specimens for flexural analysis and dynamic mechanical analysis were printed from down selected combinations. This work resulted in the identification of key parameters for printing latent cured epoxy systems that will be scaled for the first large scale 3D printed epoxy for composite tooling applications.
UR - http://www.scopus.com/inward/record.url?scp=85068748798&partnerID=8YFLogxK
U2 - 10.33599/nasampe/s.19.1615
DO - 10.33599/nasampe/s.19.1615
M3 - Conference contribution
AN - SCOPUS:85068748798
T3 - International SAMPE Technical Conference
BT - SAMPE Conference and Exhibition
A2 - Ahlstrom, Kevin
A2 - Anderson, Jacob Preston
A2 - Beckwith, Scott
A2 - Becnel, Andrew Craig
A2 - Biermann, Paul Joseph
A2 - Buchholz, Matt
A2 - Cates, Elizabeth
A2 - Gardner, Brian
A2 - Harris, Jim
A2 - Knight, Michael J.
A2 - Reyes-Villanueva, German
A2 - Scarborough, Stephen E.
A2 - Sears, Phil
A2 - Thomas, James
A2 - Thostenson, Erik T.
PB - Soc. for the Advancement of Material and Process Engineering
T2 - SAMPE 2019 Conference and Exhibition
Y2 - 20 May 2019 through 23 May 2019
ER -