Extrusion deposition additive manufacturing utilizing high glass transition temperature latent cured epoxy systems

John Lindahl, Christopher Hershey, Gary Gladysz, Vinay Mishra, Karana Shah, Vlastimil Kunc

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

This paper investigates the formulation, chemo-rheological properties, and extrusion deposition additive manufacturing (AM) of high glass transition temperature epoxies. Currently there are two methods of using thermoset materials in extrusion deposition AM. The first approach uses a reactive material that will fully cross-link during the build process. The second approach, which is explored in this paper, uses a reactive material that requires a thermal curing cycle after deposition is completed. Yield stress fluids for successful deposition were produced by blending various ratios of rheology modifying fillers into latent curing epoxy systems. After analyzing the rheological properties of the various blends via shear, temperature, and cure rate, the preferred formulation was selected. Test specimens for flexural analysis and dynamic mechanical analysis were printed from down selected combinations. This work resulted in the identification of key parameters for printing latent cured epoxy systems that will be scaled for the first large scale 3D printed epoxy for composite tooling applications.

Original languageEnglish
Title of host publicationSAMPE Conference and Exhibition
EditorsKevin Ahlstrom, Jacob Preston Anderson, Scott Beckwith, Andrew Craig Becnel, Paul Joseph Biermann, Matt Buchholz, Elizabeth Cates, Brian Gardner, Jim Harris, Michael J. Knight, German Reyes-Villanueva, Stephen E. Scarborough, Phil Sears, James Thomas, Erik T. Thostenson
PublisherSoc. for the Advancement of Material and Process Engineering
ISBN (Electronic)9781934551301
DOIs
StatePublished - 2019
EventSAMPE 2019 Conference and Exhibition - Charlotte, United States
Duration: May 20 2019May 23 2019

Publication series

NameInternational SAMPE Technical Conference
Volume2019-May

Conference

ConferenceSAMPE 2019 Conference and Exhibition
Country/TerritoryUnited States
CityCharlotte
Period05/20/1905/23/19

Funding

Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program
U.S. Department of Energy
Battelle
Office of Energy Efficiency and Renewable EnergyDE-AC05-00OR22725

    Fingerprint

    Dive into the research topics of 'Extrusion deposition additive manufacturing utilizing high glass transition temperature latent cured epoxy systems'. Together they form a unique fingerprint.

    Cite this