Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi

T. J. Williams, A. E. Taylor, A. D. Christianson, S. E. Hahn, R. S. Fishman, D. S. Parker, M. A. McGuire, B. C. Sales, M. D. Lumsden

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

The high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientation that occurs below 140 K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parametrize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.

Original languageEnglish
Article number192403
JournalApplied Physics Letters
Volume108
Issue number19
DOIs
StatePublished - May 9 2016

Fingerprint

Dive into the research topics of 'Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi'. Together they form a unique fingerprint.

Cite this