Exploring the Evolution of Metal Halide Perovskites via Latent Representations of the Photoluminescent Spectra

Sheryl Sanchez, Yongtao Liu, Jonghee Yang, Sergei V. Kalinin, Maxim Ziatdinov, Mahshid Ahmadi

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In the last several years, laboratory automation and high-throughput synthesis and characterization have come to the forefront of the research community. The large datasets require suitable machine learning techniques to analyze the data effectively and extract the properties of the system. Herein, the binary library of metal halide perovskite (MHP) microcrystals, MAxFA1−xPbI3−xBrx, is explored via low-dimensional latent representations of composition- and time-dependent photoluminescence (PL) spectra. The variational autoencoder (VAE) approach is used to discover the latent factors of variability in the system. The variability of the PL is predominantly controlled by compositional dependence of the bandgap. At the same time, secondary factor of variability includes the phase separation associated with the formation of the double peaks. To overcome the interpretability limitations of standard VAEs, the workflow based on the translationally invariant variational (tVAEs) and conditional autoencoders (cVAEs) is introduced. tVAE discovers known factors of variation within the data, for example, the (unknown) shift of the peak due to the bandgap variation. Conversely, cVAEs impose known factor of variation, in this case anticipated bandgap. Jointly, the tVAE and cVAE allow to disentangle the underlying mechanisms present within the data that bring a deeper meaning and understanding within MHP systems.

Original languageEnglish
Article number2200340
JournalAdvanced Intelligent Systems
Volume5
Issue number5
DOIs
StatePublished - May 2023

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH.

Keywords

  • VAE
  • high throughput
  • machine learning
  • metal halide perovskite
  • perovskite
  • variational auto encoder (VAE)

Fingerprint

Dive into the research topics of 'Exploring the Evolution of Metal Halide Perovskites via Latent Representations of the Photoluminescent Spectra'. Together they form a unique fingerprint.

Cite this