Abstract
As the exascale era approaches, the increasing capacity of high-performance computing (HPC) systems with targeted power and energy budget goals introduces significant challenges in reliability. Silent data corruptions (SDCs), or silent errors, are one of the major sources that corrupt the execution results of HPC applications without being detected. In this work, we explore a set of novel SDC detectors – by leveraging epsilon-insensitive support vector machine regression – to detect SDCs that occur in HPC applications. The key contributions are threefold. (1) Our exploration takes temporal, spatial, and spatiotemporal features into account and analyzes different detectors based on different features. (2) We provide an in-depth study on the detection ability and performance with different parameters, and we optimize the detection range carefully. (3) Experiments with eight real-world HPC applications show that support-vector-machine-based detectors can achieve detection sensitivity (i.e., recall) up to 99% yet suffer a less than 1% false positive rate for most cases. Our detectors incur low performance overhead, 5% on average, for all benchmarks studied in this work.
Original language | English |
---|---|
Pages (from-to) | 277-290 |
Number of pages | 14 |
Journal | Sustainable Computing: Informatics and Systems |
Volume | 19 |
DOIs | |
State | Published - Sep 2018 |
Externally published | Yes |
Funding
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number 66905, program manager Lucy Nowell. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830. In addition, this material is based upon work supported by the National Science Foundation under Grant No. 1619253 , and also by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, program manager Lucy Nowell, under contract number DE-AC02-06CH11357 (DOE Catalog project) and in part by the European Union FEDER funds under contract TIN2015-65316-P. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number 66905, program manager Lucy Nowell. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830. In addition, this material is based upon work supported by the National Science Foundation under Grant No. 1619253, and also by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, program manager Lucy Nowell, under contract number DE-AC02-06CH11357 (DOE Catalog project) and in part by the European Union FEDER funds under contract TIN2015-65316-P.
Funders | Funder number |
---|---|
DOE Catalog project | |
European Union FEDER | |
National Science Foundation | DE-AC02-06CH11357, 1619253 |
U.S. Department of Energy | |
Office of Science | |
Advanced Scientific Computing Research | DE-AC05-76RL01830, 66905 |
European Commission | TIN2015-65316-P |
Keywords
- HPC applications
- Silent data corruptions
- Support vector machines