Explaining machine-learning models for gamma-ray detection and identification

Mark S. Bandstra, Joseph C. Curtis, James M. Ghawaly, A. Chandler Jones, Tenzing H.Y. Joshi

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

As more complex predictive models are used for gamma-ray spectral analysis, methods are needed to probe and understand their predictions and behavior. Recent work has begun to bring the latest techniques from the field of Explainable Artificial Intelligence (XAI) into the applications of gamma-ray spectroscopy, including the introduction of gradient-based methods like saliency mapping and Gradient-weighted Class Activation Mapping (Grad-CAM), and black box methods like Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). In addition, new sources of synthetic radiological data are becoming available, and these new data sets present opportunities to train models using more data than ever before. In this work, we use a neural network model trained on synthetic NaI(Tl) urban search data to compare some of these explanation methods and identify modifications that need to be applied to adapt the methods to gamma-ray spectral data. We find that the black box methods LIME and SHAP are especially accurate in their results, and recommend SHAP since it requires little hyperparameter tuning. We also propose and demonstrate a technique for generating counterfactual explanations using orthogonal projections of LIME and SHAP explanations.

Original languageEnglish
Article numbere0286829
JournalPLoS ONE
Volume18
Issue number6 JUNE
DOIs
StatePublished - Jun 2023

Fingerprint

Dive into the research topics of 'Explaining machine-learning models for gamma-ray detection and identification'. Together they form a unique fingerprint.

Cite this