Experimental study of C 13 (α,n) O 16 reactions in the Majorana Demonstrator calibration data

Majorana Collaboration

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Neutron captures and delayed decays of reaction products are common sources of backgrounds in ultrarare event searches. In this work, we studied C13(α,n)O16 reactions induced by α particles emitted within the calibration sources of the Majorana Demonstrator. These sources are thorium-based calibration standards enclosed in carbon-rich materials. The reaction rate was estimated by using the 6129-keV γ rays emitted from the excited O16 states that are populated when the incoming α particles exceed the reaction Q value. Thanks to the excellent energy performance of the Demonstrator's germanium detectors, these characteristic photons can be clearly observed in the calibration data. Facilitated by Geant4 simulations, a comparison between the observed 6129-keV photon rates and predictions by a talys-based software was performed. The measurements and predictions were found to be consistent, albeit with large statistical uncertainties. This agreement provides support for background projections from (α,n) reactions in future double-beta decay search efforts.

Original languageEnglish
Article number064610
JournalPhysical Review C
Volume105
Issue number6
DOIs
StatePublished - Jun 2022

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts/Awards No. DE-AC02-05CH11231, No. DE-AC05-00OR22725, No. DE-AC05-76RL0130, No. DE-FG02-97ER41020, No. DE-FG02-97ER41033, No. DE-FG02-97ER41041, No. DE-SC0012612, No. DE-SC0014445, No. DE-SC0018060, and No. LANLEM77/LANLEM78. We acknowledge support from the Particle Astrophysics Program and Nuclear Physics Program of the National Science Foundation through Grants No. MRI-0923142, No. PHY-1003399, No. PHY-1102292, No. PHY-1206314, No. PHY-1614611, No. PHY-1812409, No. PHY-1812356, and No. PHY-2111140. We gratefully acknowledge the support of the Laboratory Directed Research & Development (LDRD) program at Lawrence Berkeley National Laboratory for this work. We gratefully acknowledge the support of the U.S. Department of Energy through the Los Alamos National Laboratory LDRD Program and through the Pacific Northwest National Laboratory LDRD Program for this work. We gratefully acknowledge the support of the South Dakota Board of Regents Competitive Research Grant. We acknowledge support from the Russian Foundation for Basic Research, Grant No. 15-02-02919. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, funding reference number SAPIN-2017-00023, and from the Canada Foundation for Innovation John R. Evans Leaders Fund. This research used resources provided by the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory and by the National Energy Research Scientific Computing Center, a U.S. Department of Energy Office of Science User Facility. We thank our hosts and colleagues at the Sanford Underground Research Facility for their support.

FundersFunder number
Canada Foundation for Innovation John R. Evans Leaders Fund
National Science FoundationPHY-1003399, PHY-1812409, PHY-1206314, PHY-1614611, PHY-1102292, PHY-1812356, MRI-0923142, PHY-2111140
U.S. Department of Energy
Office of Science
Nuclear PhysicsDE-AC05-00OR22725, DE-AC05-76RL0130, DE-AC02-05CH11231, DE-SC0012612, DE-FG02-97ER41020, DE-FG02-97ER41033, LANLEM77/LANLEM78, DE-FG02-97ER41041, DE-SC0018060, DE-SC0014445
Oak Ridge National Laboratory
Laboratory Directed Research and Development
South Dakota Board of Regents
Los Alamos National Laboratory
National Energy Research Scientific Computing Center
Natural Sciences and Engineering Research Council of CanadaSAPIN-2017-00023
Russian Foundation for Basic Research15-02-02919

    Fingerprint

    Dive into the research topics of 'Experimental study of C 13 (α,n) O 16 reactions in the Majorana Demonstrator calibration data'. Together they form a unique fingerprint.

    Cite this