Abstract
We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au + Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a quark-gluon plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.
Original language | English |
---|---|
Pages (from-to) | 102-183 |
Number of pages | 82 |
Journal | Nuclear Physics A |
Volume | 757 |
Issue number | 1-2 SPEC. ISS. |
DOIs | |
State | Published - Aug 8 2005 |
Externally published | Yes |
Funding
We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL for their support. This work was supported in part by the HENP Divisions of the Office of Science of the US DOE; the US NSF; the BMBF of Germany; IN2P3, RA, RPL, and EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Science and Technology; the Ministry of Education and the NNSFC of China; Grant Agency of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India; Swiss NSF; the Polish State Committee for Scientific Research; and the STAA of Slovakia.
Funders | Funder number |
---|---|
EMN | |
Office of Science of the US DOE | |
Russian Ministry of Science and Technology | |
National Science Foundation | |
Engineering and Physical Sciences Research Council | |
Department of Science and Technology, Ministry of Science and Technology, India | |
Council of Scientific and Industrial Research, India | |
Department of Atomic Energy, Government of India | |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | |
Stichting voor Fundamenteel Onderzoek der Materie | |
Fundação de Amparo à Pesquisa do Estado de São Paulo | |
National Natural Science Foundation of China | |
Grantová Agentura České Republiky | |
Bundesministerium für Bildung und Forschung | IN2P3 |
Bundesministerium für Bildung und Forschung | |
Ministry of Education | |
Komitet Badań Naukowych |