Abstract
The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.
Original language | English |
---|---|
Article number | 808578 |
Journal | Frontiers in Fungal Biology |
Volume | 3 |
DOIs | |
State | Published - 2022 |
Funding
SF and SC acknowledge NanoBio ICMG (UAR 2607) for technical support in mass spectrometry (A. Durand, L. Fort, R. Gueret) and NMR (I. Jeacomine) and partial financial support from the LABEX ARCANE and CBH-EUR-GS (ANR-17-EURE-0003), Glyco@Alps (ANR-15-IDEX-02), and PolyNat Carnot Institut (ANR-16-CARN-0025-01). were made with BioRender on www.biorender.com . This study received funding from the Genomic Science Program, US Department of Energy (DOE), Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Areas at the Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle LLC for DOE under contract DE-AC05-00OR22725. This work was also supported by the NSF award # 1546742 as well as USDA Hatch #WIS03041 to JMA. Lastly, partial financial support from the LABEX ARCANE and CBH-EUR-GS (ANR-17-561 EURE-0003), Glyco@Alps (ANR-15-IDEX-02), and PolyNat Carnot Institut (ANR-16-CARN562 0025-01) for SF and SC. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. This research was sponsored by the Genomic Science Program, US Department of Energy (DOE), Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Areas at the Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle LLC for DOE under contract DE-AC05-00OR22725. This work was also supported by the NSF award # 1546742 as well as USDA Hatch #WIS03041 to JMA.
Keywords
- Laccaria bicolor
- chitooligosaccharides
- lipo-chitooligosaccharides
- polarized growth
- proteomics