Excitonic luminescence upconversion in a two-dimensional semiconductor

Aaron M. Jones, Hongyi Yu, John R. Schaibley, Jiaqiang Yan, David G. Mandrus, Takashi Taniguchi, Kenji Watanabe, Hanan Dery, Wang Yao, Xiaodong Xu

Research output: Contribution to journalArticlepeer-review

209 Scopus citations

Abstract

Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. This phenomenon lies at the heart of optical refrigeration in solids, where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities or exciton-phonon coupling. Here, we demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe 2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors. Since the charged exciton binding energy closely matches the 31 meV A′ 1 optical phonon, we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. In addition, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.

Original languageEnglish
Pages (from-to)323-327
Number of pages5
JournalNature Physics
Volume12
Issue number4
DOIs
StatePublished - Apr 1 2016

Funding

We thank R. Merlin and D. Cobden for helpful discussions. This work is mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145 and SC0012509). H.Y. and W.Y. are supported by the Croucher Foundation (Croucher Innovation Award), and the RGC and UGC of Hong Kong (HKU17305914P, HKU9/CRF/13G, AoE/P-04/08). J.Y. and D.G.M. are supported by US DoE, BES, Materials Sciences and Engineering Division. H.D. is supported by Department of Energy under Contract No. DE-SC0014349 and National Science Foundation under Contract No. DMR-1503601. X.X. acknowledges a Cottrell Scholar Award, support from the State of Washington-funded Clean Energy Institute, and support from the Boeing Distinguished Professorship in Physics. Device fabrication was performed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility. This work is mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145 and SC0012509). H.Y. and W.Y. are supported by the Croucher Foundation (Croucher Innovation Award), and the RGC and UGC of Hong Kong (HKU17305914P, HKU9/CRF/13G, AoE/P-04/08). J.Y. and D.G.M. are supported by US DoE, BES, Materials Sciences and Engineering Division. H.D. is supported by Department of Energy under Contract No. DE-SC0014349 and National Science Foundation under Contract No. DMR-1503601. X.X. acknowledges a Cottrell Scholar Award, support from the State of Washington-funded Clean Energy Institute, and support from the Boeing Distinguished Professorship in Physics. Device fabrication was performed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility.

Fingerprint

Dive into the research topics of 'Excitonic luminescence upconversion in a two-dimensional semiconductor'. Together they form a unique fingerprint.

Cite this