Evolutionary games on isothermal graphs

Benjamin Allen, Gabor Lippner, Martin A. Nowak

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Population structure affects the outcome of natural selection. These effects can be modeled using evolutionary games on graphs. Recently, conditions were derived for a trait to be favored under weak selection, on any weighted graph, in terms of coalescence times of random walks. Here we consider isothermal graphs, which have the same total edge weight at each node. The conditions for success on isothermal graphs take a simple form, in which the effects of graph structure are captured in the ‘effective degree’—a measure of the effective number of neighbors per individual. For two update rules (death-Birth and birth-Death), cooperative behavior is favored on a large isothermal graph if the benefit-to-cost ratio exceeds the effective degree. For two other update rules (Birth-death and Death-birth), cooperation is never favored. We relate the effective degree of a graph to its spectral gap, thereby linking evolutionary dynamics to the theory of expander graphs. Surprisingly, we find graphs of infinite average degree that nonetheless provide strong support for cooperation.

Original languageEnglish
Article number5107
JournalNature Communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019
Externally publishedYes

Funding

B.A. is supported by National Science Foundation award #DMS-1715315. We thank Babak Fotouhi for sharing data on Birth-death updating.

Fingerprint

Dive into the research topics of 'Evolutionary games on isothermal graphs'. Together they form a unique fingerprint.

Cite this