Abstract
Evolution occurs in populations of reproducing individuals. The structure of a population can affect which traits evolve. Understanding evolutionary game dynamics in structured populations remains difficult. Mathematical results are known for special structures in which all individuals have the same number of neighbours. The general case, in which the number of neighbours can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class that suggests there is no efficient algorithm. Whether a simple solution for weak selection exists has remained unanswered. Here we provide a solution for weak selection that applies to any graph or network. Our method relies on calculating the coalescence times of random walks. We evaluate large numbers of diverse population structures for their propensity to favour cooperation. We study how small changes in population structure - graph surgery - affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.
Original language | English |
---|---|
Pages (from-to) | 227-230 |
Number of pages | 4 |
Journal | Nature |
Volume | 544 |
Issue number | 7649 |
DOIs | |
State | Published - Apr 13 2017 |
Externally published | Yes |
Funding
This work was supported by Office of Naval Research grant N00014-16-1-2914, the John Templeton Foundation, a gift from B. Wu and E. Larson, AFOSR grant FA9550-13-1-0097 (G.L.), the James S. McDonnell Foundation (B.F.), and the Center for Mathematical Sciences and Applications at Harvard University (B.A., Y.-T.C). We are grateful to S. R. Sundaresan and D. I. Rubenstein for providing data on zebra and wild ass networks, and for discussions.