TY - JOUR
T1 - Evolution of recrystallization texture in nickel-iron alloys
T2 - experiments and simulations
AU - Shankar, Gyan
AU - Sanandiya, Shuchi
AU - Barrales-Mora, Luis A.
AU - Suwas, Satyam
N1 - Publisher Copyright:
© 2023 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - The present work is aimed at examining the effect of solid solution on the development of recrystallization microstructure and texture in FCC materials where SFE remains unchanged on alloying addition. To elucidate the mechanisms of texture formation during recrystallization, pure Ni and Ni-Fe (20 and 40 wt.% Fe) alloys were investigated. After recrystallization, pure Ni showed a cube and a non-uniform α-fibre texture, whereas the Ni-Fe alloys showed a texture characterised by the rotated cube component, brass recrystallization (BR) orientation, and a non-uniform α-fibre. Addition of Fe to pure Ni has led to some fine differences in the recrystallization texture that have been attributed to the role of highly heterogeneous deformed microstructure in the Ni-Fe system because of alloying. However, in all the cases Cu-oriented grains are prone to early recrystallization due to relatively more heterogeneously deformed regions, whereas deformed grains having orientation <110> || ND have shown slow recrystallization. In all cases, the entire stage of recrystallization is dominated by the formation of annealing twin (Σ3) boundary. The mobility of these twin boundaries plays an important role in the evolution of the recrystallization texture, which in turn, depends on its coherency, i.e. grain boundary plane (K1) of twin boundaries. The mechanism of evolution of recrystallization texture and the role of different deformation features during recrystallization is investigated. The cellular automata simulation technique was used to simulate the recrystallization behaviour of the alloys. The simulation results were used to discuss experimental observations.
AB - The present work is aimed at examining the effect of solid solution on the development of recrystallization microstructure and texture in FCC materials where SFE remains unchanged on alloying addition. To elucidate the mechanisms of texture formation during recrystallization, pure Ni and Ni-Fe (20 and 40 wt.% Fe) alloys were investigated. After recrystallization, pure Ni showed a cube and a non-uniform α-fibre texture, whereas the Ni-Fe alloys showed a texture characterised by the rotated cube component, brass recrystallization (BR) orientation, and a non-uniform α-fibre. Addition of Fe to pure Ni has led to some fine differences in the recrystallization texture that have been attributed to the role of highly heterogeneous deformed microstructure in the Ni-Fe system because of alloying. However, in all the cases Cu-oriented grains are prone to early recrystallization due to relatively more heterogeneously deformed regions, whereas deformed grains having orientation <110> || ND have shown slow recrystallization. In all cases, the entire stage of recrystallization is dominated by the formation of annealing twin (Σ3) boundary. The mobility of these twin boundaries plays an important role in the evolution of the recrystallization texture, which in turn, depends on its coherency, i.e. grain boundary plane (K1) of twin boundaries. The mechanism of evolution of recrystallization texture and the role of different deformation features during recrystallization is investigated. The cellular automata simulation technique was used to simulate the recrystallization behaviour of the alloys. The simulation results were used to discuss experimental observations.
KW - cellular automata
KW - Ni-Fe alloy
KW - recrystallization texture
KW - SFE
KW - shear band
KW - twins
UR - http://www.scopus.com/inward/record.url?scp=85165704620&partnerID=8YFLogxK
U2 - 10.1080/14786435.2023.2238231
DO - 10.1080/14786435.2023.2238231
M3 - Article
AN - SCOPUS:85165704620
SN - 1478-6435
VL - 103
SP - 1787
EP - 1827
JO - Philosophical Magazine
JF - Philosophical Magazine
IS - 19
ER -