Evidence for an odd-parity nematic phase above the charge-density-wave transition in a kagome metal

T. Asaba, A. Onishi, Y. Kageyama, T. Kiyosue, K. Ohtsuka, S. Suetsugu, Y. Kohsaka, T. Gaggl, Y. Kasahara, H. Murayama, K. Hashimoto, R. Tazai, H. Kontani, B. R. Ortiz, S. D. Wilson, Q. Li, H. H. Wen, T. Shibauchi, Y. Matsuda

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The search for quantum states arising from the interplay between correlation, frustration and topology is a central topic for condensed-matter physics. Recently discovered non-magnetic kagome metals AV3Sb5 (A = K, Cs or Rb) with charge-density-wave and superconducting instabilities may host such exotic states. Here we report evidence that an odd-parity electronic nematic state emerges at a higher temperature than the charge density wave in CsV3Sb5. Our torque measurements reveal a two-fold in-plane magnetic anisotropy that breaks the crystal rotational symmetry. Moreover, in the temperature range between the formation of the charge density wave and a nematic state, rotating an external magnetic field in a conical fashion yields a distinct first-order phase transition, indicating time-reversal symmetry breaking. These results provide thermodynamic evidence for the emergence of an odd-parity nematic order. In addition, elastoresistance shows no discernible anomalies near the onset of nematicity, consistent with the odd-parity order. These findings suggest that an exotic loop current state precedes the charge-density-wave transition in CsV3Sb5.

Original languageEnglish
Pages (from-to)40-46
Number of pages7
JournalNature Physics
Volume20
Issue number1
DOIs
StatePublished - Jan 2024

Funding

A part of this work was supported by CREST (no. JPMJCR19T5; to Y.M. and T.S.) from the Japan Science and Technology (JST), Grants-in-Aid for Scientific Research (KAKENHI) (nos. 18H05227, 18H03680, 18H01180, 21K13881) and Grant-in-Aid for Scientific Research on innovative areas ‘Quantum Liquid Crystals’ (no. JP19H05824) from the Japan Society for the Promotion of Science (JSPS) (to T.S.). S.D.W. gratefully acknowledges support from the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i program under award DMR-1906325. Work by B.R.O. was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division.

Fingerprint

Dive into the research topics of 'Evidence for an odd-parity nematic phase above the charge-density-wave transition in a kagome metal'. Together they form a unique fingerprint.

Cite this