Evaporation-induced buckling and fission of microscale droplet interface bilayers

Jonathan B. Boreyko, Prachya Mruetusatorn, Stephen A. Sarles, Scott T. Retterer, C. Patrick Collier

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers (μDIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemispherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a critical bending moment, the buckling bilayer fissions a vesicle to regulate its shape and mass. The μDIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo-and exocytosis in cells.

Original languageEnglish
Pages (from-to)5545-5548
Number of pages4
JournalJournal of the American Chemical Society
Volume135
Issue number15
DOIs
StatePublished - Apr 17 2013

Fingerprint

Dive into the research topics of 'Evaporation-induced buckling and fission of microscale droplet interface bilayers'. Together they form a unique fingerprint.

Cite this