Evaluation of intracoronary hemodynamics identifies perturbations in vorticity

Madhurima Vardhan, John Gounley, S. James Chen, Priya Nair, Wei Wei, Luiz Hegele, Jonathan Kusner, Andrew M. Kahn, David Frakes, Jane A. Leopold, Amanda Randles

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background and objective: Coronary artery disease (CAD) is highly prevalent and associated with adverse events. Challenges have emerged in the treatment of intermediate coronary artery stenoses. These lesions are often interrogated with fractional flow reserve (FFR) testing to determine if a stenosis is likely to be causative for ischemia in a cardiac territory. This invasive test requires insertion of a pressure wire into a coronary vessel. Recently computational fluid dynamics (CFD) has been used to noninvasively assess fractional flow reserve in vessels reconstructed from medical imaging data. However, many of these simulations are unable to provide additional information about intravascular hemodynamics, including velocity, endothelial shear stress (ESS), and vorticity. We hypothesized that vorticity, which has demonstrated utility in the assessment of ventricular and aortic diseases, would also be an important hemodynamic factor in CAD. Methods: Three-dimensional (3D), patient-specific coronary artery geometries that included all vessels >1 mm in diameter were created from angiography data obtained from 10 patients who underwent diagnostic angiography and FFR testing (n = 9). A massively parallel CFD solver (HARVEY) was used to calculate coronary hemodynamic parameters including pressure, velocity, ESS, and vorticity. These simulations were validated by comparing velocity flow fields from simulation to both velocities derived from in vitro particle image velocimetry and to invasively acquired pressure wire-based data from clinical testing. Results: There was strong agreement between findings from CFD simulations and particle image velocimetry experimental testing (p < 0.01). CFD-FFR was also highly correlated with invasively measured FFR (ρ = 0.77, p = 0.01) with an average error of 5.9 ± 0.1%. CFD-FFR also had a strong inverse correlation with the vorticity (ρ = -0.86, p = 0.001). Simulations to determine the effect of the coronary stenosis on intravascular hemodynamics demonstrated significant differences in velocity and vorticity (both p < 0.05). Further evaluation of an angiographically normal appearing non-FFR coronary vessel in patients with CAD also demonstrated differences in vorticity when compared with FFR vessels (p < 0.05). Conclusion: The use of highly accurate 3D CFD-derived intravascular hemodynamics provides additional information beyond pressure measurements that can be used to calculate FFR. Vorticity is one parameter that is modified by a coronary stenosis and appears to be abnormal in angiographically normal vessels in patients with CAD, highlighting a possible use-case in preventative screening for early coronary disease.

Original languageEnglish
Article number930396
JournalFrontiers in Systems Biology
Volume2
DOIs
StatePublished - 2022

Funding

This work was supported by the Coulter Foundation (AR, MV, LH, JG, SC), American Heart Association Predoctoral Fellowship 20PRE35211158 (MV); American Heart Association AIM 19AIML34980000, NHLBI U01 HL125215 (JL); and NSF 1943036 and NIH U01CA253511 (AR). The content does not necessarily represent the official views of the NIH or NSF. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).

Keywords

  • computational fluid dynamics
  • coronary artery disease
  • fractional flow reserve
  • shear stress
  • vorticity

Fingerprint

Dive into the research topics of 'Evaluation of intracoronary hemodynamics identifies perturbations in vorticity'. Together they form a unique fingerprint.

Cite this