Evaluating Energy-Aware Scheduling Algorithms for I/O-Intensive Scientific Workflows

Tainã Coleman, Henri Casanova, Ty Gwartney, Rafael Ferreira da Silva

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Improving energy efficiency has become necessary to enable sustainable computational science. At the same time, scientific workflows are key in facilitating distributed computing in virtually all domain sciences. As data and computational requirements increase, I/O-intensive workflows have become prevalent. In this work, we evaluate the ability of twopopular energy-aware workflow scheduling algorithms to provide effective schedules for this class of workflow applications, that is, schedules that strike a good compromise between workflow execution time and energy consumption. These two algorithms make decisions based on a widely used power consumption model that simply assumes linear correlation to CPU usage. Previous work has shown this model to be inaccurate, in particular for modeling power consumption of I/O-intensive workflow executions, and has proposed an accurate model. We evaluate the effectiveness of the two aforementioned algorithms based on this accurate model. We find that, when making their decisions, these algorithms can underestimate power consumption by up to 360%, which makes it unclear how well these algorithm would fare in practice. To evaluate the benefit of using the more accurate power consumption model in practice, we propose a simple scheduling algorithm that relies on this model to balance the I/O load across the available compute resources. Experimental results show that this algorithm achieves more desirable compromises between energy consumption and workflow execution time than the two popular algorithms.

Original languageEnglish
Title of host publicationComputational Science – ICCS 2021 - 21st International Conference, Proceedings
EditorsMaciej Paszynski, Dieter Kranzlmüller, Dieter Kranzlmüller, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, Peter M.A. Sloot, Peter M.A. Sloot, Peter M.A. Sloot
PublisherSpringer Science and Business Media Deutschland GmbH
Pages183-197
Number of pages15
ISBN (Print)9783030779603
DOIs
StatePublished - 2021
Event21st International Conference on Computational Science, ICCS 2021 - Virtual, Online
Duration: Jun 16 2021Jun 18 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12742 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Computational Science, ICCS 2021
CityVirtual, Online
Period06/16/2106/18/21

Funding

Acknowledgments. This work is funded by NSF contracts #1923539, #1923621, #2016610, and #2016619. Results presented in this paper were obtained using the Chameleon testbed supported by the National Science Foundation.

Keywords

  • Energy-aware computing
  • Scientific workflows
  • Workflow scheduling
  • Workflow simulation

Fingerprint

Dive into the research topics of 'Evaluating Energy-Aware Scheduling Algorithms for I/O-Intensive Scientific Workflows'. Together they form a unique fingerprint.

Cite this