Evaluating efficacy of indoor non-pharmaceutical interventions against COVID-19 outbreaks with a coupled spatial-SIR agent-based simulation framework

Chathika Gunaratne, Rene Reyes, Erik Hemberg, Una May O’Reilly

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Contagious respiratory diseases, such as COVID-19, depend on sufficiently prolonged exposures for the successful transmission of the underlying pathogen. It is important that organizations evaluate the efficacy of non-pharmaceutical interventions aimed at mitigating viral transmission among their personnel. We have developed a operational risk assessment simulation framework that couples a spatial agent-based model of movement with an agent-based SIR model to assess the relative risks of different intervention strategies. By applying our model on MIT’s Stata center, we assess the impacts of three possible dimensions of intervention: one-way vs unrestricted movement, population size allowed onsite, and frequency of leaving designated work location for breaks. We find that there is no significant impact made by one-way movement restrictions over unrestricted movement. Instead, we find that reducing the frequency at which individuals leave their workstations combined with lowering the number of individuals admitted below the current recommendations lowers the likelihood of highly connected individuals within the contact networks that emerge, which in turn lowers the overall risk of infection. We discover three classes of possible interventions based on their epidemiological effects. By assuming a direct relationship between data on secondary attack rates and transmissibility in the agent-based SIR model, we compare relative infection risk of four respiratory illnesses, MERS, SARS, COVID-19, and Measles, within the simulated area, and recommend appropriate intervention guidelines.

Original languageEnglish
Article number6202
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

Funding

This work was supported by MIT Quest for Intelligence. This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This work was supported by MIT Quest for Intelligence. This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).

Fingerprint

Dive into the research topics of 'Evaluating efficacy of indoor non-pharmaceutical interventions against COVID-19 outbreaks with a coupled spatial-SIR agent-based simulation framework'. Together they form a unique fingerprint.

Cite this