Abstract
Nonequilibrium pulling simulations have been a useful approach for investigating a variety of physical and biological problems. The major target in the simulations is to reconstruct reliable potentials of mean force (PMFs) or unperturbed free-energy profiles for quantitatively addressing both equilibrium mechanistic properties and contributions from nonequilibrium processes. While several current nonequilibrium methods were shown to be accurate in computing free-energy profiles in systems with relatively simple dynamics, they have proved to be unsuitable in more complicated systems. To extend the applicability of nonequilibrium sampling, we demonstrate a novel method that combines Minh-Adib's bidirectional estimator with nonlinear WHAM equations to reconstruct and assess PMFs from relatively fast pulling trajectories. We test the method in a one-dimensional model system and in a system of an antibiotic gramicidin-A (gA) channel, which is considered a significant challenge for nonequilibrium sampling. We identify key parameters for efficiently performing pulling simulations to improve and ensure the convergence and accuracy of estimated PMFs. We show that a few pulling trajectories of a relatively fast pulling speed v = 10 Å/ns can return a fair estimate of the PMF of a single potassium ion in gA.
Original language | English |
---|---|
Pages (from-to) | 1000-1010 |
Number of pages | 11 |
Journal | Journal of Chemical Theory and Computation |
Volume | 12 |
Issue number | 3 |
DOIs | |
State | Published - Mar 8 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 American Chemical Society.