Estimating Watershed Subsurface Permeability From Stream Discharge Data Using Deep Neural Networks

Erol Cromwell, Pin Shuai, Peishi Jiang, Ethan T. Coon, Scott L. Painter, J. David Moulton, Youzuo Lin, Xingyuan Chen

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Subsurface permeability is a key parameter in watershed models that controls the contribution from the subsurface flow to stream flows. Since the permeability is difficult and expensive to measure directly at the spatial extent and resolution required by fully distributed watershed models, estimation through inverse modeling has had a long history in subsurface hydrology. The wide availability of stream surface flow data, compared to groundwater monitoring data, provides a new data source to infer soil and geologic properties using integrated surface and subsurface hydrologic models. As most of the existing methods have shown difficulty in dealing with highly nonlinear inverse problems, we explore the use of deep neural networks for inversion owing to their successes in mapping complex, highly nonlinear relationships. We train various deep neural network (DNN) models with different architectures to predict subsurface permeability from stream discharge hydrograph at the watershed outlet. The training data are obtained from ensemble simulations of hydrographs corresponding to an permeability ensemble using a fully-distributed, integrated surface-subsurface hydrologic model. The trained model is then applied to estimate the permeability of the real watershed using its observed hydrograph at the outlet. Our study demonstrates that the permeabilities of the soil and geologic facies that make significant contributions to the outlet discharge can be more accurately estimated from the discharge data. Their estimations are also more robust with observation errors. Compared to the traditional ensemble smoother method, DNNs show stronger performance in capturing the nonlinear relationship between permeability and stream hydrograph to accurately estimate permeability. Our study sheds new light on the value of the emerging deep learning methods in assisting integrated watershed modeling by improving parameter estimation, which will eventually reduce the uncertainty in predictive watershed models.

Original languageEnglish
Article number613011
JournalFrontiers in Earth Science
Volume9
DOIs
StatePublished - Feb 8 2021

Funding

The authors are grateful to Ahmad Jan for helping with model setup for the reference case ATS model of Rock Creek and to Zhufeng Fang for helping developed the reference case forward simulation of Rock Creek using ATS. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the United States Department of Energy under contract DE-AC02-05CH11231. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract Number DE-AC05-00OR22725. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). This paper describes objective technical The authors are grateful to Ahmad Jan for helping with model setup for the reference case ATS model of Rock Creek and to Zhufeng Fang for helping developed the reference case forward simulation of Rock Creek using ATS. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the United States Department of Energy under contract DE-AC02-05CH11231. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract Number DE-AC05-00OR22725. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the United States Department of Energy or the United States Government. This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paidup, irrevocable, world-wide license to publish, or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This work was funded by the ExaSheds project, which was supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research, Earth and Environmental Systems Sciences Division, Data Management Program, under Award Number DE-AC02-05CH11231.

FundersFunder number
DOE Public Access Plan
Office of Science of the United States Department of Energy
United States Government
U.S. Department of EnergyDE-AC05-00OR22725
BattelleDE-AC05-76RL01830
Office of ScienceDE-AC02-05CH11231
National Nuclear Security Administration89233218CNA000001
Oak Ridge National Laboratory
UT-Battelle

    Keywords

    • DNN
    • inverse modeling
    • machine learning
    • stream discharge
    • subsurface permeability

    Fingerprint

    Dive into the research topics of 'Estimating Watershed Subsurface Permeability From Stream Discharge Data Using Deep Neural Networks'. Together they form a unique fingerprint.

    Cite this