Abstract
In this work, we explore the ability to estimate vehicle fuel consumption using imagery from overhead fisheye lens cameras deployed as traffic sensors. We utilize this information to simulate vision-based control of a traffic intersection, with a goal of improving fuel economy with minimal impact to mobility. We introduce the ORNL Overhead Vehicle Data set (OOVD), consisting of a data set of paired, labeled vehicle images from a ground-based camera and an overhead fisheye lens traffic camera. The data set includes segmentation masks based on Gaussian mixture models for vehicle detection. We show the data set utility through three applications: estimation of fuel consumption based on segmentation bounding boxes, vehicle discrimination for vehicles with large bounding boxes, and fine-grained classification on a limited number of vehicle makes and models using a pre-trained set of convolutional neural network models. We compare these results with estimates based on a large open-source data set of web-scraped imagery. Finally, we show the utility of the approach using reinforcement learning in a traffic simulator using the open source Simulation of Urban Mobility (SUMO) package. Our results demonstrate the feasibility of the approach for controlling traffic lights for better fuel efficiency based solely on visual vehicle estimates from commercial, fisheye lens cameras.
Original language | English |
---|---|
Article number | 070 |
Journal | IS and T International Symposium on Electronic Imaging Science and Technology |
Volume | 2020 |
Issue number | 6 |
DOIs | |
State | Published - Jan 26 2020 |
Event | 2020 Intelligent Robotics and Industrial Applications Using Computer Vision Conference, IRIACV 2020 - Burlingame, United States Duration: Jan 26 2020 → Jan 30 2020 |
Funding
This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
Keywords
- Computer vision
- Data sets
- Image segmentation
- Reinforcement learning