Abstract
Analytical solutions of thin film dampers are useful for determining critical speeds and stability of rotor systems. Most thin film dampers in use are of short axial length, and closed-form solutions to the Reynolds equations exist for estimating pressure, forces, and damping for these types of dampers. This article compares the fluid film forces and damping estimated by the short film bearing model form of the Reynolds equations to the calculated forces and damping of a transient computational fluid dynamic simulation. For this comparison, the fluid was assumed to be incompressible, laminar, and isoviscous. The fluid film forces and damping are calculated from integrating the pressure distribution over the surface of the damper due to small amplitude motions about a steady state static off-center circular orbit. In this case, no cavitation is assumed, and the journal has no angular velocity, so direct stiffness cannot be calculated from the closed-form solution. Radial clearance, journal length, and journal eccentricity have a significant effect on fluid force and damping within a thin film damper. Fluid density does not affect fluid force or damping substantially, while fluid viscosity does. Both the closed-form solutions and computational fluid dynamics simulation compare well with each other and reflect these trends.
Original language | English |
---|---|
Title of host publication | Mechanics of Solids, Structures, and Fluids |
Publisher | American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791859469 |
DOIs | |
State | Published - 2019 |
Event | ASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019 - Salt Lake City, United States Duration: Nov 11 2019 → Nov 14 2019 |
Publication series
Name | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) |
---|---|
Volume | 9 |
Conference
Conference | ASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 11/11/19 → 11/14/19 |
Funding
This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This material is based upon work supported by the US Department of Energy, Office of Science. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).