Abstract
Membrane-based Liquid Desiccant Air Dehumidifier (MLDAD) has the potential to overcome the shortcomings of the conventional open-tower liquid desiccant air dehumidifier. The MLDAD uses membranes with high water vapor permeability to separate air stream from the liquid desiccant and thus eliminates carry-over and the resulting corrosion issues. Recently, the ionic liquid desiccant becomes a promising alternative to conventional liquid desiccant. The ionic liquid desiccant has a large potential of dehumidification, which is also non-corrosive to metals and non-crystallizable. A two-dimensional numerical heat and mass transfer model of the MLDAD using a recently identified ionic liquid desiccant, [EMIM]OAc, is presented in this paper. This model can simulate the performance of the MLDAD with various designs, including different selections of liquid desiccant and membrane materials, dimensions of the MLDAD, and flow patterns. For porous membranes, this model accounts for several micro-scale mass transfer mechanisms of vapor transportation across the membrane. It can also model the mass transfer performance of dehumidifiers using non-porous membranes based on the experimentally measured membrane permeance. The numerical model was validated against the performance data available from literature and experimental tests. The maximum discrepancy of the latent effectiveness between the measured and the model-predicted results was about 6% when porous membranes were used. A parametric study was conducted with the numerical model. The results indicated that the membrane permeability, air path height, and solution to air mass ratio were the most critical parameters, determining the dehumidification performance of the MLDAD.
Original language | English |
---|---|
Article number | 115754 |
Journal | Applied Thermal Engineering |
Volume | 181 |
DOIs |
|
State | Published - Nov 25 2020 |
Funding
This work was supported by the Emerging Technologies Program of the Buildings Technology Office at the US Department of Energy ; Xergy, a small business technology inventor.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Building Technologies Office |
Keywords
- Air dehumidifier
- Ionic liquid desiccant
- Membrane
- Numerical modeling