TY - JOUR
T1 - Environmental associations of Ophidiomyces ophidiicola, the causative agent of ophidiomycosis in snakes
AU - Friedeman, Nicholas
AU - Carter, Evin
AU - Kingsbury, Bruce A.
AU - Ravesi, Michael J.
AU - Josimovich, Jillian M.
AU - Matthews, Monica
AU - Jordan, Mark A.
N1 - Publisher Copyright:
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2024/10
Y1 - 2024/10
N2 - Emerging pathogenic fungi have become a topic of conservation concern due to declines observed in several host taxa. One emerging fungal pathogen, Ophidiomyces ophidiicola, is well documented as the causative agent of ophidiomycosis, otherwise known as snake fungal disease (SFD). O. ophidiicola has been found to cause disease in a variety of snake species across the United States, including the eastern massasauga (Sistrurus catenatus), a federally threatened rattlesnake species. Most work to date has involved detecting O. ophidiicola for diagnosis of infection through direct sampling of snakes, and attempts to detect O. ophidiicola in the abiotic environment to better understand its distribution, seasonality, and habitat associations are lacking. We collected topsoil and groundwater samples from four macrohabitat types across multiple seasons in northern Michigan at a site where Ophidiomyces infection has been confirmed in eastern massasauga. Using a quantitative PCR (qPCR) assay developed for O. ophidiicola, we detected Ophidiomyces DNA in topsoil but observed minimal to no detection in groundwater samples. Detection frequency did not differ between habitats, but samples grouped seasonally showed higher detection during midsummer. We found no relationships of detection with hypothesized environmental correlates such as soil pH, temperature, or moisture content. Furthermore, the distribution of Ophidiomyces positive samples across the site was not linked to estimated space use of massasaugas. Our data suggests that season has some effect on the presence of Ophidiomyces. Differences in presence between habitats may exist but are likely more dependent on the time of sampling and currently uninvestigated soil or biotic parameters. These findings build on our understanding of Ophidiomyces ecology and epidemiology to help inform where and when snakes may be exposed to the fungus in the environment.
AB - Emerging pathogenic fungi have become a topic of conservation concern due to declines observed in several host taxa. One emerging fungal pathogen, Ophidiomyces ophidiicola, is well documented as the causative agent of ophidiomycosis, otherwise known as snake fungal disease (SFD). O. ophidiicola has been found to cause disease in a variety of snake species across the United States, including the eastern massasauga (Sistrurus catenatus), a federally threatened rattlesnake species. Most work to date has involved detecting O. ophidiicola for diagnosis of infection through direct sampling of snakes, and attempts to detect O. ophidiicola in the abiotic environment to better understand its distribution, seasonality, and habitat associations are lacking. We collected topsoil and groundwater samples from four macrohabitat types across multiple seasons in northern Michigan at a site where Ophidiomyces infection has been confirmed in eastern massasauga. Using a quantitative PCR (qPCR) assay developed for O. ophidiicola, we detected Ophidiomyces DNA in topsoil but observed minimal to no detection in groundwater samples. Detection frequency did not differ between habitats, but samples grouped seasonally showed higher detection during midsummer. We found no relationships of detection with hypothesized environmental correlates such as soil pH, temperature, or moisture content. Furthermore, the distribution of Ophidiomyces positive samples across the site was not linked to estimated space use of massasaugas. Our data suggests that season has some effect on the presence of Ophidiomyces. Differences in presence between habitats may exist but are likely more dependent on the time of sampling and currently uninvestigated soil or biotic parameters. These findings build on our understanding of Ophidiomyces ecology and epidemiology to help inform where and when snakes may be exposed to the fungus in the environment.
UR - http://www.scopus.com/inward/record.url?scp=85207164801&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0310954
DO - 10.1371/journal.pone.0310954
M3 - Article
C2 - 39436883
AN - SCOPUS:85207164801
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0310954
ER -