TY - GEN
T1 - Ensuring the performance of nuclear reactor pressure vessels for long-time service
AU - Nanstad, Randy K.
AU - Odette, G. Robert
AU - Sokolov, Mikhail A.
PY - 2010
Y1 - 2010
N2 - Structural integrity of the reactor pressure vessel is a critical element in demonstrating the capability of light water reactors for operation to at least 80 y. The Light Water Reactor Sustainability Program Plan is a collaborative program between the U.S. Department of Energy and the private sector directed at extending the life of the present generation of nuclear power plants to enable such long-time operation. Given that the current generation of light water reactors were intended to operate for 40 y, there are significant issues that need to be addressed to reduce the uncertainties in regulatory application. The neutron dose to the vessel will at least double, and the database for such high dose levels under the low flux conditions in the vessel is nonexistent. Associated with this factor are uncertainties regarding flux effects, effects of relatively high nickel content, uncertainties regarding application of fracture mechanics, thermal annealing and reirradiation. The issue of high neutron fluence/long irradiation times and flux effects is the highest priority. Both data and mechanistic understanding are needed to enable accurate, reliable embrittlement predictions at high fluences. This paper discusses the major issues associated with long-time operation of existing RPVs, the LWRSP plans to address those issues, and recent relevant results.
AB - Structural integrity of the reactor pressure vessel is a critical element in demonstrating the capability of light water reactors for operation to at least 80 y. The Light Water Reactor Sustainability Program Plan is a collaborative program between the U.S. Department of Energy and the private sector directed at extending the life of the present generation of nuclear power plants to enable such long-time operation. Given that the current generation of light water reactors were intended to operate for 40 y, there are significant issues that need to be addressed to reduce the uncertainties in regulatory application. The neutron dose to the vessel will at least double, and the database for such high dose levels under the low flux conditions in the vessel is nonexistent. Associated with this factor are uncertainties regarding flux effects, effects of relatively high nickel content, uncertainties regarding application of fracture mechanics, thermal annealing and reirradiation. The issue of high neutron fluence/long irradiation times and flux effects is the highest priority. Both data and mechanistic understanding are needed to enable accurate, reliable embrittlement predictions at high fluences. This paper discusses the major issues associated with long-time operation of existing RPVs, the LWRSP plans to address those issues, and recent relevant results.
UR - http://www.scopus.com/inward/record.url?scp=80155182258&partnerID=8YFLogxK
U2 - 10.1115/PVP2010-25832
DO - 10.1115/PVP2010-25832
M3 - Conference contribution
AN - SCOPUS:80155182258
SN - 9780791849286
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
SP - 125
EP - 133
BT - ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, PVP2010
T2 - ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, PVP2010
Y2 - 18 July 2010 through 22 July 2010
ER -