Abstract
When simulating vegetation dynamics, photosynthesis accounts for a large fraction of the computational cost in most Earth System Models (ESMs). This is largely since photosynthesis is represented as a system of nonlinear equations, and the solution requires the use of an initial guess followed by many iterations of the numerical solver to obtain a solution. We use machine learning (ML) to replicate the response surface of the model's numerical solver to improve the choice of initial guess, therefore requiring fewer iterations to obtain a final solution. We implemented this test on the leaf-level calculations as well as at the canopy scale, and for both we observed fewer iterations of the photosynthesis solver when a ML-based initial guess was implemented. The model tested here is the Energy Exascale Earth System Model - Land Model (ELM). The ML-based algorithms used here are trained on simulations from the model itself and used only to improve the initial guess for the solver; therefore, the model maintains its own set of physics to obtain the final solution. This work shows novel ways to utilize ML-based methods to improve the performance of numerical solvers in ESMs.
| Original language | English |
|---|---|
| Title of host publication | Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024 |
| Editors | Wei Ding, Chang-Tien Lu, Fusheng Wang, Liping Di, Kesheng Wu, Jun Huan, Raghu Nambiar, Jundong Li, Filip Ilievski, Ricardo Baeza-Yates, Xiaohua Hu |
| Publisher | Institute of Electrical and Electronics Engineers Inc. |
| Pages | 4351-4356 |
| Number of pages | 6 |
| ISBN (Electronic) | 9798350362480 |
| DOIs | |
| State | Published - 2024 |
| Event | 2024 IEEE International Conference on Big Data, BigData 2024 - Washington, United States Duration: Dec 15 2024 → Dec 18 2024 |
Publication series
| Name | Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024 |
|---|
Conference
| Conference | 2024 IEEE International Conference on Big Data, BigData 2024 |
|---|---|
| Country/Territory | United States |
| City | Washington |
| Period | 12/15/24 → 12/18/24 |
Funding
This research was supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation (RUBISCO) Science Focus Area (RUBISCO SFA KP1703), which is sponsored by the Regional and Global Model Analysis (RGMA) activity of the Earth & Environmental Systems Modeling (EESM) Program in the Earth and Environmental Systems Sciences Division (EESSD) of the Office of Biological and Environmental Research (BER) in the US Department of Energy Office of Science. This manuscript has been authored by UT-Battelle, LLC, under contract DEAC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.
Keywords
- Earth System Model
- machine learning
- numerical solver
- photosynthesis