Abstract
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm-1, the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.
Original language | English |
---|---|
Article number | 8916 |
Journal | Nature Communications |
Volume | 6 |
DOIs | |
State | Published - Nov 26 2015 |
Funding
Research conducted at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Part of the research at ORNL was sponsored by the Scientific User Facilities Division and Materials Sciences and Engineering Division (J.H.L. and J.-Q.Y). Z.Z. was partially supported by the CEM and NSF MRSEC under Grant No. DMR-1420451. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Research was supported in part by Grant-in-Aid for Scientific Research (22246083, 22850019, 25289233) from JSPS and FIRST Program from JSPS and ALCA program from JST and the Ministry of Science and Technology of China (973 Project No. 2011CBA00110). This research was supported by National Natural Science Foundation of China (No. 11274367)).