Abstract
Microporous metal-organic frameworks (MOFs) represent a new family of microporous materials, offering potential applications in gas separation and storage, catalysis, and membranes. The engineering of hierarchical superstructured MOFs, i.e., fabricating mesopores in microporous frameworks during the crystallization stage is expected to serve a myriad of applications for molecular adsorption, drug delivery, and catalysis. However, MOFs with mesopores are rarely studied because of the lack of a simple, effective way to construct mesoscale cavities in the structures. Here, we report the use of a perturbation-assisted nanofusion technique to construct hierarchically superstructured MOFs. In particular, the mesopores in the MOF structure enabled the confinement of large dye species, resulting in fluorescent MOF materials, which can serve as a new type of ratiometric luminescent sensors for typical volatile organic compounds.
Original language | English |
---|---|
Pages (from-to) | 17893-17898 |
Number of pages | 6 |
Journal | Dalton Transactions |
Volume | 43 |
Issue number | 48 |
DOIs | |
State | Published - Dec 28 2014 |