Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure

Xiaoyu Wen, Zhou Yu, Yifan Zhao, Jian Zhang, Rui Qiao, Lei Cheng, Chunmei Ban, Juchen Guo

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

A new deposition mechanism is presented in this study to achieve highly reversible plating and stripping of magnesium (Mg) anodes for Mg-ion batteries. It is known that the reduction of electrolyte anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) causes Mg surface passivation, resulting in poor electrochemical performance for Mg-ion batteries. We reveal that the addition of sodium cations (Na+) in Mg-ion electrolytes can fundamentally alter the interfacial chemistry and structure at the Mg anode surface. The molecular dynamics simulation suggests that Na+ cations contribute to a significant population in the interfacial double layer so that TFSI- anions are excluded from the immediate interface adjacent to the Mg anode. As a result, the TFSI- decomposition is largely suppressed so does the formation of passivation layers at the Mg surface. This mechanism is supported by our electrochemical, microscopic, and spectroscopic analyses. The resultant Mg deposition demonstrates smooth surface morphology and lowered overpotential compared to the pure Mg(TFSI)2 electrolyte.

Original languageEnglish
Pages (from-to)52461-52468
Number of pages8
JournalACS Applied Materials and Interfaces
Volume13
Issue number44
DOIs
StatePublished - Nov 10 2021
Externally publishedYes

Keywords

  • Mg(TFSI)
  • NaTFSI
  • interface
  • magnesium anode
  • magnesium-ion batteries

Fingerprint

Dive into the research topics of 'Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure'. Together they form a unique fingerprint.

Cite this