Eliminating dissolution of platinum-based electrocatalysts at the atomic scale

Pietro P. Lopes, Dongguo Li, Haifeng Lv, Chao Wang, Dusan Tripkovic, Yisi Zhu, Roberto Schimmenti, Hideo Daimon, Yijin Kang, Joshua Snyder, Nigel Becknell, Karren L. More, Dusan Strmcnik, Nenad M. Markovic, Manos Mavrikakis, Vojislav R. Stamenkovic

Research output: Contribution to journalArticlepeer-review

142 Scopus citations

Abstract

A remaining challenge for the deployment of proton-exchange membrane fuel cells is the limited durability of platinum (Pt) nanoscale materials that operate at high voltages during the cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined single-crystalline, thin-film and nanoscale surfaces exposed Pt dissolution trends that governed the design and synthesis of durable materials. A newly defined metric, intrinsic dissolution, is essential to understanding the correlation between the measured Pt loss, surface structure, size and ratio of Pt nanoparticles in a carbon (C) support. It was found that the utilization of a gold (Au) underlayer promotes ordering of Pt surface atoms towards a (111) structure, whereas Au on the surface selectively protects low-coordinated Pt sites. This mitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles and resulted in the elimination of Pt dissolution in the liquid electrolyte, which included a 30-fold durability improvement versus 3 nm Pt/C over an extended potential range up to 1.2 V.

Original languageEnglish
Pages (from-to)1207-1214
Number of pages8
JournalNature Materials
Volume19
Issue number11
DOIs
StatePublished - Nov 1 2020

Funding

This work was done at the Argonne National Laboratory, which is operated for the US Department of Energy (DOE) Office of Science by the UCArgonne, LLC, under contract no. DE-AC02-06CH11357. The research efforts on single-crystalline systems, well-defined thin films and in situ dissolution measurements were supported by the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Synthesis and characterization of the nanoscale materials was supported by the US DOE Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Transmission electron microscopy studies were accomplished at the Center for Nanoscale Materials at the Argonne National Laboratory, an Office of Science user facility supported by the US DOE Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357, and at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, an Office of Science user facility supported by the US DOE Office of Science, Office of Basic Energy Sciences, with work supported by the Hydrogen & Fuel Cell Technologies Office, Energy Efficiency and Renewable Energy, US Department of Energy. Computational modelling work at University of Wisconsin-Madison was supported by the Department of Energy, Basic Energy Sciences, Division of Chemical Sciences (grant DE-FG02-05ER15731), and was partially performed using supercomputer resources at the National Energy Research Scientific Computing Center (NERSC). NERSC is supported by the US DOE, Office of Science, under contract no. DE-AC02-05CH11231.

FundersFunder number
Division of Chemical SciencesDE-FG02-05ER15731
Office of Basic Energy Sciences
UCArgonne, LLC
DOE Office of ScienceDE-AC02-06CH11357
US Department of Energy
U.S. Department of Energy
Office of Science
Office of Energy Efficiency and Renewable Energy
Basic Energy Sciences
Argonne National Laboratory
Oak Ridge National Laboratory
Fuel Cell Technologies Office
Division of Materials Sciences and Engineering
Chemical Sciences, Geosciences, and Biosciences Division

    Fingerprint

    Dive into the research topics of 'Eliminating dissolution of platinum-based electrocatalysts at the atomic scale'. Together they form a unique fingerprint.

    Cite this