Elevated temperature cyclic service evaluation based on Elasticperfectly plastic analysis and integrated creep-fatigue damage

T. L. Sam Sham, Robert I. Jetter, Yanli Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen "pseudo" yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The original SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.

Original languageEnglish
Title of host publicationCodes and Standards
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850367
DOIs
StatePublished - 2016
EventASME 2016 Pressure Vessels and Piping Conference, PVP 2016 - Vancouver, Canada
Duration: Jul 17 2016Jul 21 2016

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume1B-2016
ISSN (Print)0277-027X

Conference

ConferenceASME 2016 Pressure Vessels and Piping Conference, PVP 2016
Country/TerritoryCanada
CityVancouver
Period07/17/1607/21/16

Fingerprint

Dive into the research topics of 'Elevated temperature cyclic service evaluation based on Elasticperfectly plastic analysis and integrated creep-fatigue damage'. Together they form a unique fingerprint.

Cite this