Abstract
The recent prediction that honeycomb lattices of Co2+ (3d7) ions could host dominant Kitaev interactions provides an exciting direction for exploration of new routes to stabilizing Kitaev's quantum spin liquid in real materials. Na3Co2SbO6 has been singled out as a potential material candidate provided that spin and orbital moments couple into a Jeff=12 ground state, and that the relative strength of trigonal crystal field and spin-orbit coupling acting on Co ions can be tailored. Using x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) experiments, alongside configuration interaction calculations, we confirm the counterintuitive positive sign of the trigonal crystal field acting on Co2+ ions and test the validity of the Jeff=12 description of the electronic ground state. The results lend experimental support to recent theoretical predictions that a compression (elongation) of CoO6 octahedra along (perpendicular to) the trigonal axis would drive this cobaltate toward the Kitaev limit, assuming the Jeff=12 character of the electronic ground state is preserved.
Original language | English |
---|---|
Article number | 214443 |
Journal | Physical Review B |
Volume | 107 |
Issue number | 21 |
DOIs | |
State | Published - Jun 1 2023 |