Abstract
Electronic phase separation has been increasingly recognized as an important phenomenon in understanding many of the intriguing properties displayed in transition metal oxides. It is believed to produce fascinating functional properties in otherwise chemically homogenous electronic systems, e.g., colossal magnetoresistance manganites and high-Tc cuprates. While many well-known electronically phase-separated systems are oxides, it has been argued that the same phenomenon should occur in other electronic systems with strong competing interactions. Here we report the observation of electronic phase separation in molecular (ND4)2FeCl5·D2O, a type-II multiferroic. We show that two magnetic phases, one of which is commensurate and the other of which is incommensurate, coexist in this material. Their evolution under applied magnetic field produces emergent properties. In particular, our measurements reveal a field-induced exotic state linked to a direct transition from a paraelectric/paramagnetic phase to a ferroelectric/antiferromagnetic phase, a collective phenomenon that hasn't been seen in other magnetic multiferroics.
Original language | English |
---|---|
Article number | 054407 |
Journal | Physical Review B |
Volume | 98 |
Issue number | 5 |
DOIs | |
State | Published - Aug 8 2018 |
Bibliographical note
Publisher Copyright:© 2018 American Physical Society.