Abstract
There has been enormous recent interest in heterostructures of two-dimensional van der Waals materials. Integrating materials with different quantum ground states in vertical heterostructures is predicted to lead to novel electronic properties that are not found in the constituent layers. Here, we present direct synthesis of a superconductor-magnet hybrid heterostructure by combining superconducting niobium diselenide (NbSe2) with the monolayer vanadium diselenide (VSe2). Molecular-beam epitaxy growth in ultra-high vacuum yields clean and atomically sharp interfaces. Combining different characterization techniques and density-functional theory calculations, we investigate the electronic and magnetic properties of VSe2 on NbSe2. Low temperature scanning tunneling microscopy measurements show an absence of the typical charge density wave on VSe2 and demonstrate a reduction of the superconducting gap of NbSe2 on the VSe2 layer. This suggests magnetization of the VSe2 sheet, at least on the local scale. Our work demonstrates superconducting-magnetic hybrid materials with potential applications in future electronics devices.
Original language | English |
---|---|
Article number | 116 |
Journal | Communications Physics |
Volume | 3 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2020 |
Externally published | Yes |
Funding
This research made use of the Aalto Nanomicroscopy Center (Aalto NMC) facilities and was supported by the European Research Council (ERC-2017-AdG no. 788185 “Artificial Designer Materials”) and Academy of Finland (Academy professor funding no. 318995 and 320555, Academy postdoctoral researcher no. 309975, and Academy research fellow no. 311058). Our DFT calculations were performed using computer resources within the Aalto University School of Science “Science-IT” project and the Finnish CSC-IT Center for Science. M.M.U. acknowledges support by the Spanish MINECO under grant no. MAT2017-82074-ERC and by the ERC Starting grant LINKSPM (Grant 758558).
Funders | Funder number |
---|---|
ERC-2017-AdG | |
Horizon 2020 Framework Programme | 758558 |
H2020 European Research Council | 788185 |
European Research Council | |
Academy of Finland | 311058, 318995, 320555, 309975 |
Ministerio de Economía y Competitividad | MAT2017-82074-ERC |